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8.4 The t distribution

A typical statistical investigation will involve estimating the mean of a population using the mean of a sample. We know
that this estimator is consistent, so that if we take a large sample, there is a high probability that the estimate is close to
the mean. In many cases, we would like to assess the variability in the estimate (especially if we want to know how large
a sample we need). But the variance of the sampling distribution for the mean depends on the variance of the population,
which we presumably also don’t know. So we also estimate this parameter using the sample variance. Miraculously, for
samples from a Normal population, these two estimators are independent!

We can use this to fact to estimate the distribution of the sample mean.

Def: Consider two independent random variables Y and Z, where Z ∼ N(0, 1) and Y ∼ χ2(m). Define a random variable
T by

T =
Z√
Y
m

Then the distribution of T is called the Student’s t-distribution with m degrees of freedom.

A worthy aside on the t-distribution. The Student-t distribution was introduced in 1908 by William Gosset, a Master
Brewer at Guinness, while working on quality control for beer. He was required by the company to publish his work under
a pseudonym, and he chose the name Student.

Thm: The pdf of the t distribution with n degrees of freedom is
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Proof. Since Y, Z are independent by assumption, their joint PDF factors as the product of their marginal PDFs:

fY,Z(y, z) = fY (y)fZ(z)

Let W = Y and note that Z = T
√

W
m . Consider the transformation from (T,W ) to (Z, Y ), which has Jacobian determinant
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By the change of variables formula,

fT,W (t, w) =fZ,Y (z, y)
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To obtain the marginal PDF of T , we integrate out w from the joint PDF:
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∫ ∞

0

fT,W (t, w) dw =

∫ ∞

0

w(m+1)/2−1 exp

{
−1

2

(
1 +

t2

m

)
w

}
dw

=

∫ ∞

0

w(m+1)/2e−
1
2βw

1

w
dw where β =

(
1 +

t2

m

)
=c

Γ((m+ 1)/2)

β(m+1)/2



STA 336 Sampling Spring 2023

Cor: The first m− 1 moments of the t-distribution with m degrees of freedom exist. All higher moments do not exist.

While the t distribution is symmetric and bell-shaped, we say that it has heavier tails than the Normal distribution.

Thm: When m = 1, the t-distribution is the Cauchy distribution. As m → ∞, the t(m) distribution approaches the standard
Normal distribution.

Proof. Recall that a variable has Cauchy distribution if it can be expressed as the ratio of two standard Normal variables.
When m = 1, the variable

√
Y ∼ |Z1|, where Z1 ∼ N(0, 1). And so T ∼ Z/|Z1|. But T is symmetric, and so actually,

Z ∼ Z

Z1
.

The second result follows from the Strong Law of Large Numbers. Consider a sequence of standard Normal random variables
Z1, Z2, . . . and let

Ym = Z2
1 + · · ·+ Z2

m

By the SLLN, Ym

m → E[Z2
1 ] = 1 with probability 1. Let Z ∼ N(0, 1) independent of all of the Zi, and let

Tm =
Z√
Yn

m

Then Tm ∼ t(m) by definition, and as the denominator converges to 1 with probability 1, then Tn converges to Z in
distribution.

What is the ultimate relationship between the t-distribution and samples from a Normal population?

Thm: Suppose X1, . . . , Xn form a random sample from N(µ, σ2). Let X̄ denote the sample mean and

S =

√∑
(Xi − X̄)2

n− 1

Then

T =
X̄ − µ

S√
n

has the t-distribution with n− 1 degrees of freedom.

Proof. Observe
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And
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σ√
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∼ N(0, 1)
∑(

Xi − X̄
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∼ χ2(n− 1).

One important feature of the preceding theorem is that neither the estimates from T nor the sampling distribution of T
depend on the value of the variance σ2.

Ex 1: A batch of stout beer is best when it has an original gravity (OG) close to 1.071. The particular OG of a batch
depends on a number factors (like temperature, rest time, recipe, etc.) but is (approximately) Normally distributed. Suppose
we sample 5 OG measurements from a batch of beer:

1.067 1.060 1.077 1.072 1.067 with x̄ = 1.0686 and s = 0.0064

What is the probability of obtaining a sample at least as extreme as this one, if the batch truly had an OG of 1.071? How
would the answer differ if I knew σ = 0.0064?


