
STA 336 Sampling Spring 2023

8.1 The Sampling Distribution

Previously, we’ve used statistics as means of estimating the value of a parameter, and have selected which statistics to
use based on general principle: The Bayes Estimator was selected to minimize average squared loss, for a given prior
distribution, while the MLE represented the value where the likelihood function attained a maximum, and the Method of
Moments estimator was obtained by estimating each moment of the distribution and solving for the parameters.

Now it’s time for us to consider the distribution of these estimators themselves.

Def: Given a random sample X, let T be a function of X and possibly θ. Since X is random, them T (X, θ) is also a random
variable. It’s distribution is called the sampling distribution of T

Note: in the special case when T does not depend on θ, then T will be a statistic. If the statistic is used to estimate a
parameter θ, we can use the sampling distribution of the statistic to assess the probability that the estimator is close to θ.

Ex 1: Let X1, . . . , Xn ∼ N(µ, σ2). We define two functions, R and T :

R(X) =
1

n

∑
Xi = X̄ T (X, µ, σ2) =

X̄ − µ

σ/
√
n

Note that R is a statistic, while T is not.

Since the Xi are Normally distributed, then X̄ is also Normal. In particular, the sampling distribution of X̄ is N(µ, σ2/n).

By location-scale transformations, the variable T (X, µ, σ2) is Normally distributed, with mean of 0 and variance 1. Impor-
tantly, it turns out that the distribution of T does not depend on the values of the potentially unknown parameters µ and
σ2.

Ex 2: Suppose X1, . . . , Xn ∼ Unif(0, θ). What are some possible estimators we could use to estimate θ? Find at least 3.

Ex 3: Suppose X1, . . . , Xn ∼ Unif(0, θ). The MLE θ̂MLE for θ is max{Xi}, which has density function:

f(x) =
n

θn
xn−1

and so θ̂MLE

θ ∼ Beta(n, 1). The mean and variance of θ̂MLE are

E[θ̂MLE ] =
n

n+ 1
θ var(θ̂MLE) =

nθ2

(n+ 1)2(n+ 2)

On the other hand, the MoM estimator for θ is θ̂MoM = 2X̄, whose distribution doesn’t have a particularly nice form (it is
the density for a sum of iid uniform variables). However, by the Central Limit Theorem, if n is relatively large (in this case,

n ≥ 5 is probably fine), then θ̂MoM is approximately Normal. And in any case, with mean and variance

E[θ̂MoM ] = θ var(θ̂MoM ) =
θ2

3n

Ex 4: For each of the MLE and MoM estimators, what sample size is necessary to ensure the standard deviation of the
estimator is less than 1% of the value of θ?

Solution. For θ̂MoM , n ≥ 1
0.012

√
3
≈ 5774. For θ̂MLE , n ≥ 99. ■

Ex 5: Use R to simulate samples from Unif(0, 10). Compare the sampling distributions of the two (or more) estimators.


