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7.6 Properties of Maximum Likelihood Estimators

Invariance

Ex 1: A reparameterization refers to a change in the indexing set for a model. Consider the family of exponential distribu-
tions, which is classically parameterized by the rate λ, where X ∼ λ means that the density of X is

f(x) = λe−λx x ≥ 0

The mean of X is the reciprocal of the rate parameter: E[X] = 1
λ .

But note that if we are told the value of the mean of X, we can determine the rate parameter and specify the distribution
of X. For example if, E[X] = 2, then λ = 1

2 and X ∼ Expo(1/2).

Or more generally, if E[X] = µ, then λ = 1
µ and X ∼ Expo(1/µ). But this means that the family of exponential distributions

can be parameterized by the mean µ: specifying a value of µ specifies the particular density function of X.

Note that while every exponential distribution can be specified either by the mean µ or by the rate λ, identical values of µ
and λ do not give identical distributions. If µ = 2, then the density for X is

f(x) =
1

2
e−x/2

while if λ = 2, then
f(x) = 2e−2x.

Maximum Likelihood Estimators have an important invariance property:

Thm: If θ̂ is the MLE of θ and g is a one-to-one function, then g(θ̂) is the MLE of g(θ).

Proof. Let Γ = g(Ω). Since g is one-to-one, it has an inverse h on Γ. The likelihood function for ψ = g(θ) is conditional
distribution of x given ψ. But we know the conditional distribution of x given θ: f(x|θ), and since θ = h(ψ), the likelihood
function for ψ is

f(x|h(ψ))

This function is maximized when θ = θ̂ = h(g(θ̂)), and so is maximized when g(θ) = g(θ̂).

Essentially, what this property means is that the MLE estimator associated to a likelihood function is invariant under
reparameterization.

Ex 2: Suppose X1, . . . , Xn are conditionally iid Pois(θ). Find the MLE for p = P (Xi = 0).

Solution. Note that p = P (Xi = 0) = e−θ, so by the invariance principal, it suffices to find the MLE for θ. Note that the
likelihood and log likelihood functions for θ are

f(x|θ) ∝ e−nθθx1+···+xn log f(x|θ) = c− nθ + (x1 + · · ·+ xn) log θ

Differentiating
∂

∂θ
log f = −n+

x1 + · · ·+ xn
θ

which has a zero at θ = 1
n (x1 + · · ·+ xn) = x̄. Hence, the MLE for p is p̂ = e−x̄. ■

We would like to extend this result to arbitrary functions g. But one problem is that if g(θ) is not one-to-one, and the
statistical model is parameterized by θ, then the likelihood function for g(θ) isn’t well-defined. To rectify, we introduce a
more general notion of likelihood function:
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Def: Let g(θ) be an arbitrary function of the parameter, and let Γ = g(Ω). For each γ ∈ Γ, let Tγ = g−1(γ) = {θ : g(θ) = γ}.
Define the induced log-likelihood function L∗(γ) by

L∗(γ) = max
θ∈Tγ

log f(x|θ)

Define the MLE of g(θ) to be γ̂ where
γ̂ = argmax

γ∈Γ
L∗(γ)

Thm: Let θ̂ be an MLE of θ and let g(θ) be a function of θ. Then an MLE of g(θ) is g(θ̂)

Ex 3: Suppose X1, . . . , Xn are a random sample from Bern(θ), a distribution with mean θ and variance ν = θ(1 − θ). If θ̂

is the MLE for θ, then θ̂(1− θ̂) is an MLE for ν.

Ex 4: Previously, we showed the that the MLE for the parameter θ = (µ, σ2) in the model Xi ∼ N(µ, σ) is

θ̂ =

(
X̄,

1

n

n∑
i=1

(Xi − X̄)2

)

Let g be the function g(µ, σ2) = σ2. Note that g is not invertible, since multiple different values of µ get sent to the same
value of σ2. However, if we are interested in the MLE of σ2 alone (not the MLE of the pair of parameter θ = (µ, σ2)) we can
use the invariance property of the MLE to see that

(̂σ2) = g(θ̂) =
1

n

n∑
i=1

(Xi − X̄)2

Additionally, if we are interested in the standard deviation parameter σ =
√
σ2, then the MLE of σ is

σ̂ =

√
σ̂2 =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2

For this reason, when talking about MLEs, we’ll write σ̂2 and note specify whether we first computed the MLE of σ and
squared it, or computed the MLE of σ2 directly.

Not every estimator has the invariance property.

Ex 5: In general, the Bayes estimator with squared loss does not have the invariance property. Let θ be a parameter and let
g be a convex function (for example, suppose g(x) = x2). Let ψ = g(θ). By definition, the Bayes estimators for θ is E[θ|X]
and for ψ is E[ψ|X] = E[g(θ)|X]. By Jensen’s inequality, since g is a convex function, then

E[g(θ)|X] ≥ g (E[θ|X])

where equality is attained if and only if g(θ) is a linear function for fixed value of X.

Hence, in most cases, the Bayes estimator does not have the invariant property.
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Consistency

Suppose we are interested in estimating a parameter θ using a particular sampling framework. Ideally, our estimate of θ
should get closer to θ as the sample size increases. We might even say that in the limit, the estimator should equal the
parameter. However, since the observed data is random, we need to be careful how we describe this limit.

Def: A sequence of random variables X1, X2, . . . converges in probability to a number c if and only if for every δ > 0,

lim
n→∞

P (|Xn − c| > δ) = 0

We’ve seen this definition once before, in the Weak Law of Large Numbers:

Thm: If X1, . . . , Xn are iid with mean µ, then the sequence of sample means X̄1, X̄2, . . . converges in probability to µ.

Def: A sequence of estimators δn(X) of θ is consistent provided the sequence converges in probability to θ.

Thm: Let X1, X2, . . . be iid Bern(θ). For each n, let Xn = (X1, . . . , Xn) and let δn(Xn) be the MLE of θ. Then the sequence
δ1(X1), δ2(X2), δ3(X3) . . . , is a consistent sequence of estimators.

Proof. Recall that the MLE of θ with n observations is

δn(X) =
X1 + · · ·+Xn

n

the sample mean. By the Weak Law of Large Numbers, we know that the sequence of sample means converges in probability
to the mean of the data E[X1] = θ, which shows that the sequence of sample means is consistent. But we can also show this
directly for extra practice. Let δ > 0. Then

P (|δn(Xn)− θ| > θ) = P (|X̄n − θ| > θ) ≤ Var(X̄n)

δ2
=
θ(1− θ)

nδ2

But this latter expression goes to 0 as n→ ∞, which shows that δn(Xn) converges in probability to θ.

Bias

While under reasonable assumptions, the maximum likelihood estimator is consistent and has the invariance property, it can
be biased:

Def: An estimator δ(X) of g(θ) is unbiased if
E[δ(X)] = g(θ)

Ex 6: The MLE for variance in a Normal distribution is biased.

Solution. Suppose X1, . . . , Xn ∼ N(µ, σ2). Recall that the MLE for σ2 is

σ̂2 =
1

n

∑
(Xi − X̄)2

Additionally, recall the square decomposition identity:

n∑
i=1

(Xi − µ)2 = n(X̄ − µ)2 +

n∑
i=1

(Xi − X̄)2.

which can be restated as

nσ̂2 =
∑

(Xi − X̄)2 =

(
n∑

i=1

(Xi − µ)2

)
− n(X̄ − µ)2
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By taking expectation of both sides and using linearity of expectation, along with the definition of variance, we have

E[nσ̂2] =

(
n∑

i=1

E
[
(Xi − µ)2

])
− nE[(X̄ − µ)2]

=

(
n∑

i=1

Var(Xi)

)
− nVar(X̄)

=nσ2 − n
σ2

n

=(n− 1)σ2.

Therefore,

E[σ̂2] =
n1
n
σ2 < σ2

showing that σ̂2 is a biased estimator of σ2. ■

In particular, this result shows that the sample variance σ̂2 tends to underestimate the population variance σ2. Why? Because
the data in the same tend to be closer on average to the sample mean, than data in the population are to the population
mean.

Consider again the square decomposition identity:

1

n

∑
(Xi − µ)2 = (X̄ − µ)2 +

1

n

∑
(Xi − X̄)2

which implies that
1

n

∑
(Xi − µ)2 ≥ 1

n

∑
(Xi − X̄)2

with equality attained only when X̄ = µ.

Is it possible to find an unbiased estimator of the population variance? Yes, using what’s called the Bessel’s Correction.

So, should this mean we should use s2 instead of σ̂2 to estimate σ2? Probably not.

1. While s2 is unbiased, it is not the MLE, and therefore, does not have the nice theoretical properties and justification
as σ̂2.

2. In HW 4, you will show that the mean squared error of s2 is actually higher than the mean squared error of σ̂2. This
means that while on average, the value of s2 is σ2, it will still tend to be further away from σ2 than σ̂2.

3. For n relatively large, the difference between σ̂2 and s2 is very small, and so it doesn’t matter in practice which you
use. However, if n is small, you will usually have bigger problems in estimation than choosing whether to use the biased
or unbiased estimator.

Finally, note that while σ̂2 is a biased estimator, it is still consistent:

σ̂2 =
1

n

(∑
(Xi − µ)2

)
− (X̄ − µ)2

The left expression converges in probability to σ2 and the right expression converges in probability to 0, by the weak law of
large numbers.


