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7.2 Prior and Posterior Distributions

Often, we consider a parameter as a fixed, but unknown quantity. But there are many times when we have some incomplete
information about its value. Perhaps we have observed several similar experiments in the past, giving us a range of plausible
values for the parameter. Or maybe we have some educated guesses about the parameter based on theory and belief. In
these cases, it makes sense to give a distribution to the possible values for the parameter and treat it as a random variable.

Def: The distribution of a parameter θ before observing any data is called the prior distribution of the parameter. Often,
we write the prior distribution for θ as ξ(θ), which denotes the PDF if θ is continuous and the PMF if θ is discrete.

Ex 1: Consider a bag containing a total of 100 red and blue tickets. A sample of 8 tickets are taken with replacement, and
the number of red tickets X is recorded. What is the statistical model and the parameter space?

Without looking in the bag, the value of θ is unknown. We can model our uncertainty by treating θ as a random variable
and can consider the prior distribution of this variable.

The prior distribution represents a model of our own (subjective) personal beliefs about the value of θ. Several (infinitely
many!) different prior distributions are possible, and each represents different beliefs.

Consider the following four prior distributions. What does each distribution represent?

In Probability Theory, it is common to compute the likelihood of some outcome, given the value of the parameter of a
distribution. For example, suppose X1, . . . , Xn are independent and have a common density f(x) with parameter θ. We can
construct the joint distribution of the vector X = (X1, . . . , Xn) by taking the product of their marginal distributions:

fX(x) = f(x1) · · · f(xn)

But each of these marginals depends on θ, so maybe we should include this dependence:

fX(x; θ) = f(x1; θ) · · · f(xn; θ)

On the other hand, if we are treating the parameter θ as a random variable, then probability distribution for X is actually a
conditional probability distribution. That is, we could write

fX(x | θ) = f(x1 | θ) · · · f(xn | θ)

We’ll treat these two perspectives as equivalent, and just use the latter notation for both.
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Ex 2: In the card bag example, what is the PMF of X when θ = 1
100? How does this change for different values of θ?

Probability ends and Statistics begins with the collection of data. Based on an observed sample, we may need to update our
beliefs about a parameter. For example, if we were observing several flips of a coin, which a priori we believed either to be
fair or two-head (with equal probability), and noticed that the first first 10 flips were all heads, it wouldn’t be reasonable to
continue to believe it just as likely the coin is fair as it is two-headed.

Def: Consider a statistical model with parameter θ and random vector X. The conditional distribution of θ given X = x
is called the posterior distribution of θ and denoted ξ(θ |x) (where we interpret this as a PMF if θ is discrete and a PDF
if θ is continuous).

But how should we find the posterior distribution? Note that our statistical model supplies the conditional distribution of
X given θ. And by assumption, we have a prior distribution for θ. We can then use Bayes’ Theorem to get the posterior
distribution!

Thm: Suppose that n random variables X1, . . . , Xn are iid with common distribution f(x|θ). Suppose further that θ has
prior distribution ξ(θ). Then the posterior distribution of θ given X = x is

ξ(θ |x) = f(x1|θ) · · · f(xn|θ)ξ(θ)
gn(x)

where gn is the marginal joint distribution of X.

Proof. Bayes’ Theorem (either in continuous or discrete form).

Ex 3: Suppose we draw tickets from the bag one-by-one with replacement until we draw 1 blue ticket, and count the number
of red tickets X until this occurs. If the proportion of red tickets is θ, then X|θ ∼ Geom(θ).

Based on intuition, we might use a prior distribution of θ ∼ Beta(3, 1) (this has a mean of E[θ] = 3
1+3 = 3

4 ). The PMF for θ
is

ξ(θ) = 3θ2

Suppose we draw x red tickets before our first blue ticket. What is the posterior distribution of θ?

Solution. The PMF of X is
f(x|θ) = (1− θ)xθ x ∈ {0, 1, . . . }

and so
f(x, θ) = f(x|θ)ξ(θ) = (1− θ)xθ · 3θ2 = 3(1− θ)xθ3

Thus, the marginal density g of X is ∫ 1

0

f(x, θ) dθ =

∫ 1

0

3(1− θ)xθ3 dθ

But we recognize integrand from the Beta(x+ 1, 4) distribution:

1 =

∫ 1

0

Γ(x+ 5)

Γ(x+ 1)Γ(4)
(1− θ)xθ3 dθ

And so

g(x) =

∫ 1

0

3(1− θ)xθ3 dθ = 3
Γ(x+ 1)Γ(4)

Γ(x+ 5)

Therefore, the posterior distribution of θ is

ξ(θ |x) = f(x|θ)ξ(θ)
g(x)

=
3(1− θ)xθ3

3Γ(x+1)Γ(4)
Γ(x+5)

=
Γ(x+ 5)

Γ(x+ 1)Γ(4)
(1− θ)xθ3

■
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Ex 4: Compare the expectation and variance of the prior and posterior distributions for θ. (Recall that if X ∼ Beta(a, b),
then

E[X] =
a

a+ b
Var(X) =

ab

(a+ b)2(a+ b+ 1)

In the preceding posterior distribution calculation, that we didn’t actually need to calculate g! Note that g(x) is the marginal
density of X, so while it IS a function of x, it doesn’t contain θ. Because we are conditioning on X, we are treating x as a
constant, and so g is also constant with respect to θ.

We know that ξ(θ |x) is probability density, so must integrate to 1. So if we can identify a probability distribution (as
function of θ) proportional to f(x|θ)ξ(θ), this must be the distribution of ξ(θ |x), and g is simply the constant needed so this
integrates to 1.

As a result, we often write
ξ(θ |x) ∝ f(x|θ)ξ(θ)

and ignore g.

Note: In the previous discussion, we considered a simplified case where collect a single observation X. But in practice, we
will often collect a sample of n observations X = (X1, X2, . . . , Xn).

In this case, the joint distribution gn(x1, . . . , xn) of X1, . . . , Xn is still constant with respect to θ, and so we can still
identify the name of the posterior distribution ξ(θ |x) just by looking at fn(x|θ)ξ(θ) and write

ξ(θ |x) ∝ fn(x|θ)ξ(θ)

Originally, we considered the function fn(x | θ) as the conditional distribution of x, given fixed value of θ. But if we think of
the data as fixed, then this is a function of θ.

Def: The likelihood function of the observation x is the conditional PMF f(x |θ) viewed as a function of θ for fixed x.
Sometimes it is written as L(θ|x) to emphasize that it is a function of θ for fixed x.

The likelihood function should not be viewed as a PMF or PDF.

Ex 5: Suppose we flip a coin twice, with probability θ of heads; let X be the number of heads obtained. What is the
likelihood function for X = 2? What does the graph look like? Does the likelihood function integrate to 1? What does the
likelihood function look like for X = 1?

Solution. The likelihood function for X = 2 is

L(θ|2) = f(2|θ) = P (X = 2|θ) =
(
2

2

)
θ2(1− θ)0 = θ2 θ ∈ (0, 1)
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Note ∫ 1

0

L(θ|2) dθ =

∫ 1

0

θ2 dθ =
1

3

For X = 1, the likelihood function is

L(θ|1) = f(1|θ) = P (X = 1|θ) =
(
2

1

)
θ1(1− θ)1 = 2θ(1− θ) θ ∈ (0, 1)

■


