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7.6 Method of Moments

The method of moments is a parameter estimation technique that is often easier to implement and compute than the Bayesian
or MLE alternatives.

The method itself dates back to the late 19th century, when Karl Pearson published a paper analyzing the distribution of
the ratio of forehead width to body length of crabs. Pearson believed observed asymmetrical distribution was resulted from
the mixture of two populations, each of which was normal. The proposed mixture model had 5 parameters: 2 means, 2
variances, and a ratio of population sizes. Pearson computed the first 5 sample moments from the data and compared to the
theoretical moments, giving a set of 5 equations in 5 unknowns. Pearson then presented this method as an alternative to
prevailing Normal approximation method.

Def: The kth moment µk of a random variable X is the value µk = E[Xk]. The kth central moment is the value

E[(X − µ)k], and the kth standardized moment is the value E

[(
X−µ
σ

)k
]
.

Ex 1: Calculate the 2nd moment of X ∼ Beta(α, β).

Solution. Recall that Γ(x+ 1) = xΓ(x) and

1 =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx so

Γ(α)Γ(β)

Γ(α+ β)
=

∫ 1

0

xα−1(1− x)β−1 dx

Then

E[X2] =

∫ 1

0

x2 Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx

=
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα+2−1(1− x)β−1 dx

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 2)Γ(β)

Γ(α+ β + 2)

=
α(α+ 1)Γ(α+ β)Γ(α)Γ(β)

(α+ β + 1)(α+ β)Γ(α)Γ(β)Γ(α+ β)

=
α(α+ 1)

(α+ β)(α+ β + 1)

■

Just as we can estimate the mean and variance (the 2nd central moment) of a distribution by computing corresponding
sample moments, we can estimate higher moments using higher sample moments.

Def: Let X1, . . . , Xn be a random sample. The kth sample moment is the random variable

Mk =
1

n

n∑
j=1

Xk
j

The kth central moment and standardized moment are defined analogously.

Thm: The kth sample moment is a consistent and unbiased estimator for the kth moment of a distribution.

Proof. By the Law of Large numbers, the sequence 1
n (X

k
1 + · · ·+Xk

n) converges with probability 1 to the mean of Xk
1 . But

this is exactly the kth moment of X1.

Now, by linearity,

E[Mk] =
1

n

∑
E[Xk

j ] =
1

n
nE[Xk

1 ] = E[Xk
1 ]

which shows that the kth sample moment is unbiased.
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Ex 2: Caution! While the sample moments are unbiased estimators of the moments of a random variable, this does not
mean every estimator built from moments is unbiased!

Recall that the sample variance

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2

is a biased estimator of the population variance σ2, if Xi ∼ N(µ, σ2).

For many families of distributions, the moments (or central moments, or standardized moments) can be expressed as ele-
mentary functions of the distribution’s parameters. As such, in estimating the moments of a distribution, we also implicitly
estimate the values of the parameters (provided we estimate as many moments as we have unknown parameters).

Def: To implement the method of moments in order to estimate k parameters of a distribution, express the first k
moments of the distribution in terms of those parameters, calculate the first k sample moments from observations, set the
theoretical moments equal to the sample moment estimates, and solve for the estimates of the parameters.

We’ll start with a straightforward example:

Ex 3: Suppose X1, . . . , Xn form a random sample from Expo(θ) with θ unknown. Find the Method of Moments estimator

θ̂ for θ.

Solution. To proceed, we need to express the moments of X ∼ Expo(θ) in terms of the unknown parameter(s). In this case,
note that the mean E[X] is the first moment, and E[X] = 1

θ . And so solving for θ:

θ =
1

E[X]

Our estimator for θ is obtained by replacing the first moment E[X] with the first sample moment X:

θ̂ =
1

X̄

In this case, note that the Method of Moments estimator happens to be the MLE. ■

Ex 4: Suppose X1, X2, . . . , Xn form a random sample from a Beta(α, β) distribution, let θ = (α, β) be the parameter vector.
Find the method of moments estimator for θ.

Solution. The 1st and 2nd moments µ1 and µ2 of the Beta distribution are

µ1 =
α

α+ β
µ2 =

α(α+ 1)

(α+ β)(α+ β + 1)

Now, we need to solve for α and β in terms of µ1 and µ2.

To start, note that since µ1 = α
α+β , then α+ β = α

µ1
and so

µ2 =
α(α+ 1)

(α+ β)(α+ β + 1)
=

α(α+ 1)

α
µ1

(
α
µ1

+ 1
)

Multiplying both sides of the equation by 1
µ2
1
:

µ2

µ2
1

=
α(α+ 1)

α(α+ µ1)
=

α+ 1

α+ µ1

Then cross-multiplying and solving for α gives

α =
µ1(µ1 − µ2)

µ2 − µ2
1
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To solve for β, note that α+ β = α
µ1

and so substituting the formula for α:

β =
µ1 − µ2

µ2 − µ2
1

− µ1(µ1 − µ2)

µ2 − µ2
1

=
(1− µ1)(µ1 − µ2)

µ2 − µ2
1

Now, our method of moments estimators are obtained by replacing µ1 and µ2 with the sample moments M1 and M2:

α̂ =
M1(M1 −M2)

M2 −M2
1

β̂ =
(1−M1)(M1 −M2)

M2 −M2
1

Finding a formula for the MLE is significantly more complicated and doesn’t in general have a closed form expression. ■

Ex 5: Let’s see how well the Method of Moments estimator performs in a simulation. In R, I’ll simulate data for 1000
observations from a particular Beta distribution, then use the formula from the previous part to compute the estimators for
α and β from the sample, and compare to the known values.


