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7.5 Maximum Likelihood Estimators

The Maximum Likelihood Estimation provides a method for choosing estimators of parameters that avoids using prior
distributions or loss functions. Instead, MLE selects as an estimate the value that maximizes the likelihood function. This
is one of the most widely used estimation methods in statistics (and is relatively consistent with our intuition).

Ex 1: Suppose a possibly biased coin with probability p of heads is flipped 5 times, and shows heads on exactly 1 of those
flips. Is it possible this coin is unbaised? (Yes, this outcome would occur about 15% of the time). But for what value of p
is this an unsurprising result? (If p = .2, this would occur about 40% of the time) Would you have good reason to believe
that p = .99?

Informally, the method of maximum likelihood looks at all possible models, and selects the one for which the data is most
consistent.

However, this is not the same as saying that the given value of θ was most likely to have produced the data! To do so, we
would need a prior distribution for θ.

Def: For each possible observed vector x, let δ(x) ∈ Ω denote the value of θ ∈ Ω for which the likelihood function f(x|θ)
is maximum. The maximum likelihood estimator θ̂ is defined as θ̂ = δ(X).

Ex 2: Again, suppose a coin with probability θ of landing heads is flipped 5 times, and exactly 1 heads is obtained. Find
the likelihood function and the MLE.

Solution. Let X denote the number of heads obtained in 5 flips, and note that X|θ ∼ Bin(5, θ), and so

f(x|θ) =
(
5

x

)
θx(1− θ)5−x

With x = 1, f(1|θ) ∝ θ(1− θ)4, which has a graph

Differentiating,
∂

∂θ
f(1|θ) = (1− θ)4 − 4θ(1− θ)3 = (1− θ)3(1− 5θ)

which has 0’s at θ = 1
5 , 1. Using 1st derivative test, f(1|θ) is max at θ = 1

5 . ■

In many cases, it is more convenient to maximize the log-likelihood function log f(x|θ) (why?) and note that any max of
ln f is also a max of f (also why?)
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Thm: Suppose X1, X2, . . . , Xn form an iid sample from a Normal distribution, with unknown parameters µ and σ2. The
maximum likelihood estimator for θ = (µ, σ2) is

θ̂ =

(
X̄n,

1

n

n∑
i=1

(Xi − X̄n)
2

)

Proof. By assumption, X1, . . . , Xn are conditionally iid N(µ, σ2), with

f(xi|µ, σ2) =
1√
2πσ2

exp

{
− 1

2σ2
(xi − µ)2

}
f(x|µ, σ2) =

1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

log f(x|µ, σ2) =− n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

We first seek to maximize over µ, with σ2 fixed:

∂

∂µ
log f(x|µ, σ2) =

1

σ2

n∑
i=1

(xi − µ) = −n µ
σ2

+
1

σ2

n∑
i=1

xi =
n

σ2
(x̄− µ)

which has a zero when µ = x̄. Note that the estimator for µ doesn’t depend on σ2.

Now, differentiating the log likelihood function with respect to σ2:

∂

∂σ2
log f(x|µ, σ2) = − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2

which has a zero when

σ2 =
1

n

n∑
i=1

(xi − µ)2

Since both ∂
∂µ log f and ∂

∂σ2 log f must be simultaneously zero in order to maximize log f , then we can substitute the solution
µ = x̄. This gives a critical point of

θ̂ =

(
x̄,

1

n

∑
(xi − x̄)2

)
To classify this critical point, we compute the Hessian matrix:

H(θ, σ2) =

 ∂2

∂µ2 log f
∂2

∂(σ2)∂µ log f

∂2

∂µ∂(σ2) log f
∂2

∂(σ2)2 log f

 =

 − n
σ2 − n

(σ2)2 (x̄− µ)

− n
(σ2)2 (x̄− µ) n

2(σ2)2 − 1
(σ2)3

∑n
i=1(xi − µ)2


Evaluating this at θ = x̄ and σ2 = 1

n

∑
(xi − x̄)2 = σ̂2 gives the matrix:

H(x̄, σ̂2) =

− n
σ̂2 0

0 n
2(σ̂2)2 − n

(σ̂2)2

 =

− n
σ̂2 0

0 − n
2(σ̂2)2


which has determinant

detH(x̄, σ̂2) =
n2

2(σ̂2)3
> 0
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Since
∂2

∂µ2
= − n

σ̂2
< 0

then the solution

θ̂ =

(
x̄,

1

n

∑
(xi − x̄)2

)
is a local maximum of the log likelihood function.

The maximum likelihood estimator need not be unique:

Ex 3: Suppose X1, X2, . . . , Xn ∼ f(x|θ) where
f(x|θ) = 1

2
e−|x−θ|

Then the likelihood and log-likelihood functions are

f(x|θ) = 1

2n
e−

∑
|xi−θ| log f(x|θ) = −n log 2−

∑
|xi − θ|

The log-likelihood function is maximized when the expression
∑

|xi − θ| is minimized. If n is odd, this occurs exactly when
θ is the unique median of the xi. But if n even, this occurs when θ is ANY median of the xi.

7.6 Properties of Maximum Likelihood Estimators

Maximum Likelihood Estimators have an important invariance property:

Thm: If θ̂ is the MLE of θ and g is a one-to-one function, then g(θ̂) is the MLE of g(θ).

Proof. Let Γ = g(Ω). Since g is one-to-one, it has an inverse h on Γ. The likelihood function for ψ = g(θ) is conditional
distribution of x given ψ. But we know the conditional distribution of x given θ: f(x|θ), and since θ = h(ψ), the likelihood
function for ψ is

f(x|h(ψ))

This function is maximized when θ = θ̂ = h(g(θ̂)), and so is maximized when g(θ) = g(θ̂).

Ex 4: Suppose X1, . . . , Xn are conditionally iid Pois(θ). Find the MLE for p = P (Xi = 0).

Solution. Note that p = P (Xi = 0) = e−θ, so by the invariance principal, it suffices to find the MLE for θ. Note that the
likelihood and log likelihood functions for θ are

f(x|θ) ∝ e−nθθx1+···+xn log f(x|θ) = c− nθ + (x1 + · · ·+ xn) log θ

Differentiating
∂

∂θ
log f = −n+

x1 + · · ·+ xn
θ

which has a zero at θ = 1
n (x1 + · · ·+ xn) = x̄. Hence, the MLE for p is

p̂ = e−x̄

■

We would like to extend this result to arbitrary functions g. But one problem is that if g(θ) is not one-to-one, and the
statistical model is parameterized by θ, then the likelihood function for g(θ) isn’t well-defined. To rectify, we introduce a
more general notion of likelihood function:
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Def: Let g(θ) be an arbitrary function of the parameter, and let Γ = g(Ω). For each γ ∈ Γ, let Tγ = g−1(γ) = {θ : g(θ) = γ}.
Define the induced log-likelihood function L∗(γ) by

L∗(γ) = max
θ∈Tγ

log f(x|θ)

Define the MLE of g(θ) to be γ̂ where
γ̂ = argmax

γ∈Γ
L∗(γ)

Thm: Let θ̂ be an MLE of θ and let g(θ) be a function of θ. Then an MLE of g(θ) is g(θ̂)

Ex 5: Suppose X1, . . . , Xn are a random sample from Bern(θ), a distribution with mean θ and variance ν = θ(1 − θ). If θ̂

is the MLE for θ, then θ̂(1− θ̂) is an MLE for ν.

While under reasonable assumptions, the maximum likelihood estimator is consistent and has the invariance property, it can
be biased:

Def: An estimator δ(X) of g(θ) is unbiased if
E[δ(X)] = g(θ)

Ex 6: The MLE for variance in a Normal distribution is biased.

Solution. Suppose X1, . . . , Xn ∼ N(µ, σ2). Recall that the MLE for σ2 is

σ̂2 =
1

n

∑
(Xi − X̄)2

We note that

nσ̂2 =
∑

(Xi − X̄)2

=
∑(

(Xi − µ)− (X̄ − µ)
)2

=
∑

(Xi − µ)2 − 2(Xi − µ)(X̄ − µ) + (X̄ − µ)2

=
{∑

(Xi − µ)2
}
−
{
2
∑

(Xi − µ)(X̄ − µ)
}
+
{∑

(X̄ − µ)2
}

=
{∑

(Xi − µ)2
}
−
{
2(X̄ − µ)

∑
(Xi − µ)

}
+
{
n(X̄ − µ)2

}
=
{∑

(Xi − µ)2
}
−
{
2(X̄ − µ)n(X̄ − µ)

}
+
{
n(X̄ − µ)2

}
=
{∑

(Xi − µ)2
}
−
{
n(X̄ − µ)2

}

Therefore,

E[σ̂2] =
1

n
E
[{∑

(Xi − µ)2
}
−
{
n(X̄ − µ)2

}]
=
1

n

{∑
E
[
(Xi − µ)2

]
− nE[(X̄ − µ)2]

}
=
1

n

{
nσ2 − n

σ2

n

}
=
n− 1

n
σ2

The fix?

s2 =
n

n− 1
σ̂2 =

1

n− 1

∑
(Xi − X̄)2
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But is s2 an MLE for σ2? No.

Although σ̂2 is a biased estimator, it is still consistent:

σ̂2 =
1

n

[∑
(Xi − µ)2 − n(X̄ − µ)2

]
=

∑
(Xi − µ)2

n
−
∑
n(X̄ − µ)2

n

The left expression converges in probability to σ2 and the right expression converges in probability to 0, by the weak law of
large numbers. ■


