
STA 336 Linear Regression Spring 2023

11.2 Linear Regression

The least squares regression line can be computed for any collection of data points, regardless of how they are obtained. But
in many cases, we may want to view the points as the values of random variables. In particular, we might suppose that X
and Y are random variables. Often, X will represent a variable we have control over, have easier access to observe, or believe
to determine the values of other variables, while the variable Y may one about which we want to learn, or whose values are
determined in by other variables. We call the variable X the explanatory (or predictor) variable, and the variable Y the
response variable.

Using conditional expectation, we can decompose Y as

Y = E[Y |X] + (Y − E[Y |X])

We call the function f(X) = E[Y |X] the regression function of Y on X, and call ϵ = Y − E[Y |X] the residual. Using
properties of conditional expectation, the residual is uncorrelated with X.

The simplest regression model is linear, which assumes that

E[Y |X] = β0 + β1X

The coefficients of this linear function β0, β1 are called the regression coefficients.

In general, we treat these as unknown parameters of a model, and seek to estimate them. To do so, we obtain a random
sample of size n from the distribution of (X,Y ). We can record the sample as a vector y = (y1, . . . , yn) and a vector
x = (x1, . . . , xn).

One candidate for estimators for the regression coefficients β0, β1 are the coefficients for least squares line based on the data
x,y discussed previously. We’ll now consider properties of the distribution of these estimators.

Simple Linear Regression

Assume that for all value X = x, the random variable Y can be represented as

Y = β0 + β1x+ ϵ

We make the following assumptions about this model:

1. The values x1, . . . , xn of the predictor X are fixed.

2. The conditional distribution of Yi given (x1, . . . , xn) is normal.

3. There are parameters β0, β1 so that
E[Yi|x1, . . . , xn] = β0 + β1xi

4. There is a parameter σ2 so that
Var(Yi|x1, . . . , xn) = σ2

5. The variables Y1, . . . , Yn are conditionally independent, given x1, . . . , xn.

Together, these assumptions imply that the joint conditional pdf of y given the other parameters is

f(y|x, β0, β1, σ
2) =

1

(2πσ2)n/2
exp

[
− 1

2σ2

∑
(yi − (β0 + β1xi))

2

]
Thm: Under the assumptions above, the MLEs of β0, β1 are the least-squares estimates and the MLE of σ2 is

σ̂2 =
1

n

∑
(yi − (β̂0 − β̂1xi))

2
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Proof. Consider the log-likelihood function:

log f = −n

2
log 2πσ2 − 1

2σ2

∑
(yi − (β0 + β1xi))

2

For fixed value of σ2, differentiating with respect to β0 and β1 produces the same system of equations we solved to find the
least squares estimates.

To find the MLE of σ2, replace β0, β1 with their least squares estimates and differentiate with respect to σ2. (Exercise)

Consider now the estimators β̂0 and β̂1:

β̂1 =

∑
(Yi − Ȳ )(xi − x̄)∑

(xi − x̄)2
β̂0 = Ȳ − β̂1x̄

Let

sx =
√∑

(xi − x̄)2

Note that these estimators are functions of fixed data x and random data Y.

Thm: Under the assumptions above, β̂0 and β̂1 are Multivariate Normally. Moreover, the distribution of β̂1 is Normal with

mean β1 and variance σ2

s2x
and the distribution of β̂0 is Normal with mean β0 and variance

σ2

(
1

n
+

x̄

s2x

)
.

The covariance of β̂0, β̂1 is

Cov(β̂0, β̂1) = − x̄σ2

s2x

Proof. By definition,

β̂1 =

∑
(xi − x̄)(Yi − Ȳ )

s2x
β̂0 = Ȳ − β̂1x̄

Note that Ȳ is a linear combination of the Yi, and so β̂1 is a linear combination of the Yi, and thus, β̂0 is also a linear
combination of the Yi. Hence, every linear combination of β̂0 and β̂1 is a linear combination of the Yi. Since the Yi are
conditionally independent and Normally distributed, then every linear combination of β̂0 and β̂1 are Normally distributed,
which shows that β̂0, β̂1 are Multivariate Normal. In particular, this also implies that β̂0 and β̂1 are themselves Normally
distributed.

Now, to find the mean of β̂1, we use linearity of expectation:

E[β̂1] =
1

s2x

∑
(xi − x̄)E[Yi − Ȳ ]

=
1

s2x

∑
(xi − x̄)

(
E[Yi]− E[Ȳ ]

)
=

1

s2x

∑
(xi − x̄) (β0 + β1xi − (β0 + β1x̄))

=
β1

s2x

∑
(xi − x̄) (xi − x̄) = β1

To find the variance of β1, note again it is a linear combination of independent variables, so

Var(β̂1) =

∑
(xi − x̄)2Var(Yi)

s4x
=

σ2

s2x

To find the mean of β̂0,

E[β̂0] = E[Ȳ ]− E[β̂1]x̄ =
1

n

∑
(β0 + β1xi)− β1x̄ = β0

Computing the variance of β̂0 and the covariance between β̂0 and β̂1 is left as an exercise.
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As a corollary of the preceding theorem, β̂0, β̂1 are unbiased estimators of the corresponding parameters. In fact, it turns
out that these estimators are the minimum variance linear unbiased estimators for these parameters.

Consider the random observations (x1, Y1), . . . , (xn, Yn), and suppose we wish to predict the value of Y for a specific value of

x. By assumption, Y is Normal with mean β0 + β1x and variance σ2, and so we may use Ŷ = β̂0 + β̂1x as an estimate for Y .

Thm: The MSE of this estimate is

E[(Ŷ − Y )2] = σ2

[
1 +

1

n
+

(x− x̄)2

s2x

]

Proof. Observe that E[Ŷ ] = E[Y ] = β0 + β1x = µ. Then

E[(Ŷ − Y )2] = Var(Ŷ ) + Var(Y )− 2Cov(Ŷ , Y ) = Var(Ŷ ) + Var(Y )

Now, as Ŷ = β̂0 + β̂1x, then

Var(Ŷ ) + Var(Y ) =Var(β̂0) + x2Var(β̂1) + 2xCov(β̂1, β̂2) + σ2

=
σ2

s2x
+ x2σ2

(
1

n
+

x̄σ2

s2x

)
− 2xx̄σ2

s2x
+ σ2

=σ2

(
1 +

1

n
+

(x̄− x)2

s2x

)

Note that MSE is smallest when x = x̄ and increases as x gets further from x̄.


