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11.1 Method of Least Squares

Suppose we have a collection of observations (x1, y1), . . . , (xn, yn). Our goal is to find the equation of the line y = β0 + β1x
which best “fits” the data.

Define residuals r1, . . . , rn as
ri = yi − (β0 + β1xi)

Intuitively, we might suggest that the best line is one for which the net residuals are zero

n∑
i=1

ri =

n∑
i=1

yi − (β0 + β1xi) = 0

and which minimizes the total distance between the line and the data:

n∑
i=1

d(yi, β0 − β1xi) =

n∑
i=1

d(ri, 0)

where d(x, y) is some distance function. Both d(x, y) = |y − x| and d(x, y) = (y − x)2 are popular choices.

The first condition is equivalent to requiring the line to pass through the point (x̄, ȳ):

0 =

n∑
i=1

yi − (β0 + β1xi) =

n∑
i=1

yi − nβ0 − β1

n∑
i=1

xi = n

[
1

n

n∑
i=1

yi − β0 − β1
1

n

n∑
i=1

xi

]
= n [ȳ − β0 − β1x̄]

Dividing both sides by n and solving for ȳ gives the result.

Least Absolute Line

Now, consider the optimization problem with d(x, y) = |y − x|. We seek β0, β1 so that

n∑
i=1

|yi − (β0 + β1xi)|

is minimal. But as the line must pass through (x̄, ȳ), it suffices to solve the following simpler optimization problem (which
corresponds to translating our coordinate system to put the origin at (x̄, ȳ)):

e(β1) =

n∑
i=1

|(y − ȳ)− β1(xi − x̄)|

Observe that the function e(β1) is piecewise linear in β1, with the contribution from each observation yi decreasing linearly

as β1 increases until β1 =
yi − ȳ

xi − x̄
, and then increases linearly thereafter.

This optimization problem can be meticulously solved by hand for small data sets, but for larger data sets, it is far more
computationally challenging, and are an example of linear programming problems. The general algorithm for solving these
problems (called the simplex algorithm) was discovered in the 1950s by George Danzig.

Least Squares Line

As an alternative, we can consider the optimization problem with d(x, y) = (y − x)2. To minimize

e(β0, β1) =
∑

r2i =

n∑
i=1

(yi − (β0 + β1xi)
2
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we differentiate with respect to β0 and β1:

∂e

∂β0
= −2

n∑
i=1

(yi − (β0 + β1xi))
∂e

∂β1
= −2

n∑
i=1

(yi − (β0 + β1xi))xi

Setting the partials equal to 0 gives

β0n+ β1

∑
xi =

∑
yi β0

∑
xi + β1

∑
x2
i =

∑
xiyi

which are called the normal equations for β0 and β1 (Normal in this case means perpendicular, and arises for a reason
discussed at the end of these notes). Dividing both sides in the first equation by n shows that

β0 + β1x̄ = ȳ

That is, the line that minimizes the squared residuals must pass through the point (x̄, ȳ).

Suppose now that x̄, ȳ are both 0. Then the second equation is equivalent to

β1 =

∑
xiyi∑
x2
i

.

More generally, if x̄, ȳ are not 0, consider the collection of points x′
i = xi− x̄ and y′i = yi− ȳ. The line minimizing the squared

sum of residuals must have the same slope for both collection of points (since translating a line preserves slope). But since
x̄′ = 0 and ȳ′ = 0, then

β1 =

∑
x′
iy

′
i∑

(x′
i)

2
=

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
.

Thm: Let (x1, y1), . . . , (xn, yn) be a collection of n points. The line that minimizes the sum of squared residuals is given by
y = β0 + β1x with

β1 =
cov(x, y)

var(x)
β0 = ȳ − β1x̄.

Ex 1: Consider the following scatterplot showing the age x and weight y for 20 newborn babies:

The least squares line is obtained by
computing the means of x and y,
along with the variance of x, and the
covariance of x and y.

mean(x) = 4.8 mean(y) = 10

var(x) = 9.5 cov(x, y) = 3.9

This gives the equation

β1 =
cov(x, y)

var(x)
=

3.9

9.5
= 0.41

β0 =ȳ − β1x̄ = 10− 0.41 · 4.8 = 8
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Least squares in multiple variables

Suppose now that we have collection of points (x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ Rk+1, where the 0th entry of each xi

is 1. Let xij denote the ith coordinate of xj .

For example, suppose we collect measurements on k different attributes for n different people in a population. We can record
this information in the n× (k + 1) matrix X given by

X =


x1

x2

...
xn

 =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

1 xn1 xn2 · · · xnk


The matrix X is called the design matrix. The columns of X represent observations of a single variable, while the rows
represent the observations of a single individual. We wish to find linear surface in Rk+1 of best fit. Note that when k = 1,
this is identical to the problem of finding the least squares line. This linear function will have the form

y = β0 + β1x1 + · · ·+ βkxk for βi ∈ R.

Let βT =
(
β0 β1 · · · βk

)
. Note that in matrix notation, we can represent the output of the linear equation at inputs

x1, . . . ,xn as

Xβ =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

1 xn1 xn2 · · · xnk



β0

β1

...
βk

 =


β0 + β1x11 + β2x12 + · · ·+ βkx1k

β0 + β1x21 + β2x22 + · · ·+ βkx2k

...
β0 + β1xn1 + β2xn2 + · · ·+ βkxnk


As before, we proceed by finding coefficients βi which minimize the sum of squared residuals:∑

r2i =
∑(

yi − (β0 + β1xi1 + · · ·+ βkxik)
)2

=
∑

(yi − (Xβ)i)
2

To do so, we now differentiate with respect to β0, β1, . . . , βk, set equal to 0, and solve:

β0n+ β1

n∑
i=1

xi1 + · · ·+ βk

n∑
i=1

xik =

n∑
i=1

yi

β0

n∑
i=1

xi1 + β1

n∑
i=1

xi1xi1 + · · ·+ βk

n∑
i=1

xi1xik =

n∑
i=1

xi1yi

...

β0

n∑
i=1

xik + β1

n∑
i=1

xikxi1 + · · ·+ βk

n∑
i=1

xikxik =

n∑
i=1

xikyi

Or in matrix notation:
(XXT )β = XTy

Solving for β gives
β = (XXT )−1XTy

Since we make no assumptions about the relationships among the variables, the above framework allows us to find the least
squares polynomial for data, by using variables

x0 = 1 x1 = x x2 = x2 · · · xk = xk

In this case, we find a polynomial of the form

y = β0 + β1x+ β2x
2 + · · ·+ . . . βkx

k

for which the sum of squared residuals are minimal.
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Alternate Proof for Normal Equations using Linear Algebra

Let x = (x1, . . . , xn), y = (y1, . . . , yn) and 1 = (1, . . . , 1) be vectors in Rn. Let V = span{1,x}, and in particular, note that
any element v ∈ V can be written as

v = β01+ β1x = (β0 + β1x1, . . . , β0 + β1xn)

In particular, using {1,x} as a basis, we can identity vectors in V with lines in R2, where β0 and β1 are the coefficients on
the line y = β0 + β1x.

Now, consider the problem of finding the point ŷ = (β0, β1) in V that is closest to another point y. That is, we want to find
ŷ minimizing ∥y − ŷ∥2. But note that the displacement vector can be written as

y − ŷ = (y1 − (β0 + β1x1), . . . , yn − (β0 + β1xn)) with ∥y − ŷ∥2 =

n∑
i=1

(yi − (β0 + β1x))
2

So ŷ is exactly the solution to the previous optimization problem.

But to find ŷ we simply need to project y onto V . To do so, we first need an orthogonal basis for V . Observe that the
projection of x onto span{1} is

⟨x,1⟩
∥1∥2

1 =
1

n

∑
xi1 = x̄1

which means 1 and x− x̄1 are orthogonal.

The projection of y onto V is then

y =
⟨y,x− x̄1⟩
∥x− x̄1∥2

(x− x̄1) +
⟨y,1⟩
∥1∥2

1.

To simplify, observe that 1 and x − x̄1 are orthogonal, and so ⟨ȳ1,x − x̄1⟩ = 0. Additionally, note that ∥1∥2 = n and
⟨y,1⟩ =

∑
yi. Hence

y =
⟨y − ȳ1,x− x̄1⟩

∥x− x̄1∥2
(x− x̄1) + ȳ1

Letting

β1 =
⟨y − ȳ1,x− x̄1⟩

∥x− x̄1∥2
and β0 = ȳ − β1x̄

Then
y = β1x− β1x̄1+ ȳ1 = β1x+ β01

Finally, note that

β1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
.

Least Squares in Multiple Variables

Let β = (β0, . . . , βk) ∈ Rk+1 and let X denote the n× (k+1) matrix whose columns are 1,x1, . . . ,xk. Note that the squared
sum of residuals can then be expressed as ∑

r2i = ∥y −Xβ∥2

Minimizing the squared sum of residuals corresponds to projecting y onto the span of the columns of X.

We won’t go through the details right now (they can be found in your MAT 215 text), but the coordinates of the projection
are given by

β = (XTX)−1XTy.

As a quick exercise, you should verify that this formula is consistent with the one previously derived in the case when k = 1.


