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8.2 The Chi Squared Distribution

Recall that the MLE estimator for the variance σ2 of a Normal distribution with known mean µ is

σ̂2 =
1

n

∑
(Xi − µ)2

We now derive/define the sampling distribution for σ̂2.

Def: For each positive integerm, the gamma distribution with parameters α = m/2 and β = 1/2 is called the χ2 distribution
with m degrees of freedom. As such, the density for X ∼ χ2(m) is

f(x) =
1

2m/2Γ(m/2)
xm/2e−x/2 1

x
for x ≥ 0.

And the mean and variance of X are
E[X] = m Var(X) = 2m.

The MGF of X is

MX(t) =

(
1

1− 2t

)m/2

Ex 1: Investigate the density for several χ2 distributions.

Thm: If X1, . . . , Xk are independent, with Xi ∼ χ2(mi), then X1 + · · · +Xk has χ2 distribution with m = m1 + · · · +mk

degrees of freedom.

Proof. Use MGFs.

What is the link between the Normal distribution and the χ2 distribution?

Thm: Suppose Z ∼ N(0, 1). Then Y = Z2 is χ2(1).

Proof. Recall the change of variables formula. If g is invertible and Y = g(X), then

fY (y) = fX(g−1(y))

∣∣∣∣dxdy
∣∣∣∣ .

If g is differentiable, but not invertible, then fY is given by a sum across the pre-images of y.

Here, we first consider x ≥ 0. Let y = x2, so that
√
y = x. Then

fY (y) =fX(g−1(y))

∣∣∣∣dxdy
∣∣∣∣

=
1√
2π

e−(
√
y)2/2

∣∣∣∣ 1

2
√
y

∣∣∣∣
=

1√
2π

e−y/2 1

2
√
y

=
1

2
√
2π

y1/2e−y/2 1

y

Now, if x < 0, then −√
y = x. But observe that the preceding formula still holds in this case.

Ex 2: True or False? If X ∼ χ2(1), then
√
X ∼ N(0, 1)?

Cor: If X1, . . . , Xn are iid N(0, 1), then X2
1 + · · ·+X2

n is χ2 with n degrees of freedom.
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Thm: Let X1, . . . , Xn be a sample from a Normal population with mean µ and variance σ2. Define Zi = (Xi − µ)/σ. Then∑
Z2
i is χ2 with n degrees of freedom, as is nσ̂2/σ2.

Proof. Note that

nσ̂2

σ2
=

n

σ2

1

n

∑
(Xi − µ)2 =

∑(
Xi − µ

σ

)2

=
∑

Z2
i

and that Zi ∼ N(0, 1) by location-scale transformations. The result follows by the previous corollary.

Cor: The estimator σ̂2 is Gamma(n/2, n/(2σ2)), which has mean and variance of

E[σ̂2] = σ2 Var(σ̂2) =
2σ4

n

Note: σ̂2 is an unbiased estimator of σ2 when the mean is known.

8.3 Joint Distribution of the Sample Mean and Sample Variance

Now, suppose we are in the more realistic scenario where both µ and σ2 in N(µ, σ2) are unknown parameters to be estimated.

Recall that the MLE θ̂ for θ = (µ, σ2) is

θ̂ =

(
X̄,

1

n

n∑
i=1

(Xi − X̄)2

)

We now calculate the joint sampling distribution of θ̂.

Thm: If X1, . . . , Xn are a random sample from N(µ, σ2), the estimators X̄ = 1
n

∑
Xi and σ̂2 = 1

n

∑
(Xi − X̄)2 are indepen-

dent. The marginal distribution of X̄ is N(µ, σ2/n), and the marginal distribution of n
σ2 σ̂

2 is χ2(n− 1).

To prove this theorem, we make us of the Multivariate Normal Distribution and the following essential properties:

Def: A random vectorX is said to be multivariate Normal if every linear combination of coordinates is Normally distributed.

Thm: A MVN X is completely determined by its mean vector µ and covariance matrix Σ:

µ = (E[X1], E[X2], . . . , E[Xn]) Σ = (Cov(Xi, Xj))

Cor: If X is MVN, then X1, . . . , Xn are independent of one another if and only Cov(Xi, Xj) = 0 for all i ̸= j.

Proof. The vector (X̄,X1 − X̄, . . . , Xn − X̄) is multivariate normal, since every linear combination of its coordinates are a
linear combination of X1, . . . , Xn (which are iid N(µ, σ2) by assumption). Moreover, E[Xi − X̄] = 0 by linearity. We now
computed the covariances of X̄ with Xi − X̄. Using the bilinearity of covariance:

Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄, X̄)

For the first term,

Cov(X̄,Xi) =
1

n
Cov (X1 + · · ·+Xn, Xi) =

1

n
Cov(Xi, Xi) =

1

n
Var(Xi) =

σ2

n

For the second term,

Cov(X̄, X̄) = Var(X̄) =
σ2

n

Hence,
Cov(X̄,Xi − X̄) = Cov(X̄,Xi)− Cov(X̄, X̄) = 0
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But this means that X̄ is uncorrelated with every other component of (X1 − X̄, . . . , Xn − X̄). Since uncorrelated implies
independent for Multivariate Normal vectors, then X̄ is independent of (X1 − X̄, . . . , Xn − X̄). But σ̂2 is a function of this
vector, and so X̄ is independent of σ̂2 as well.

Now, assume that X1, . . . , Xn are standard Normal (we’ll use this to bootstrap up to the general case). Note that∑
X2

i =
∑

(Xi − X̄)2 + nX̄2

We now compute the MGFs of both sides of the equation. Since the sample mean and variance are independent, then the
MGF of their sum is the product of their MGFs. Moreover,∑

X2
i ∼ χ2(n) nX̄2 ∼ χ2(1)

Thus, letting M be the MGF of
∑

(Xi − X̄)2,(
1

1− 2t

)n/2

= M(t)

(
1

1− 2t

)1/2

and so

M(t) =

(
1

1− 2t

)(n−1)/2

which is the MGF of χ2(n− 1).

For the general case with Xi ∼ N(µ, σ2), let Xi = µ+ σZi for Zi ∼ N(0, 1). Then∑
(Xi − X̄)2 =

∑(
µ+ σZi − (µ+ σZ̄)

)2
= σ2

∑
(Zi − Z̄)2

It follows that
n

σ2
σ̂2 =

1

σ2

∑
(Xi − X̄)2 =

1

σ2
σ2
∑

(Zi − Z̄)2 ∼ χ2(n− 1)

as desired.

Also, we note that this gives a quick proof that E[σ̂2] = n−1
n σ2.


