
STA 336 Linear Regression Spring 2023

11.3 Inference for Regression

In a typical setting, if we are using (x1, y1), . . . , (xn, yn) to estimate β0, β1, then we likely need to estimate the variance of
the residuals σ2 as well. Define a random variable S2 by

S2 =
∑

(Yi − (β̂0 + β̂1xi))
2

and let σ̂2 = S2

n .

Thm: The MLE for σ2 is σ̂2.

Proof. Consider the log-likelihood function

log f(y|β0, β1, σ
2,x) = −n

2
log(σ2)− 1

2σ2

∑
(yi − (β0 + β1xi))

2

Differentiating with respect to σ2 and setting equal to 0:

0 =
∂

∂(σ2)
log f = − n

2σ2
+

1

2(σ2)2

∑
(yi − (β0 + β1xi))

2

and solving for σ2 gives

σ2 =
1

n

∑
(yi − (β0 + β1xi))

2

Replacing β0 and β1 with their MLEs β̂0 and β̂1 gives the desired result.

Just as the sample mean and sample variance are were independent for data Xi ∼ N(µ, σ2), a similar result is true for data
from the linear model.

Thm: The variables σ̂2 and β̂0, β̂1 are independent, and S2

σ2 has χ2 distribution with n− 2 degrees of freedom.

Proof. We don’t give a full proof here, but the idea is similar to the one used to show that sample mean and sample variance
are independent. In particular, we would show that Z = (β̂0, β̂1, Y1 − (β̂0 + β̂1x1), . . . , Yn − (β̂0 + β̂1xn)) are multivariate

Normal. And then show that β̂0 and β̂1 are each uncorrelated with the remaining terms. Since the vector Z is MVN, then
this implies that β̂0 and β̂1 are actually independent of the Yi − (β̂0 + β̂1xi). Finally, since S2 is a function just of the

Yi − (β̂0 + β̂1xi), this implies that β̂1 and β̂0 are independent of S2.

To see that σ̂2/σ2 is χ2(n − 1), we first assume σ2 = 1. Then we compute the MGF for the sum of squared entries of Z

(after Normalizing β̂0, β̂1 to have variance 1 and mean 0), which will be the MGF of the χ2 distribution with n degrees of

freedom. Then, using independence, we factor out the MGFs for β̂2
0 and β̂2

1 , which leaves the MGF of S2, which takes the
form of the MGF of a χ2(n−2) distribution. The general result is then obtained by dividing Z by σ and modifying the MGF
accordingly.
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Hypothesis Testing

For the remainder of this section, it will be convenient to define

σ′ =
S√
n− 2

Now, the preceding theorem showed that the joint distribution of (β̂1, β̂2) is bivariate Normal, and so in particular, any linear
combination of these variables is Normally distributed. We will use this to derive hypothesis testing procedures for general
linear combinations

c0β0 + c1β1

Specializing to c0 = 0, c1 = 1 gives a hypothesis test for β1, while c0 = 1, c1 = 0 gives a hypothesis test for β0. Finally,
c0 = 1, c1 = x gives a hypothesis test of β0 + β1x for arbitrary x.

Thm: Let c0, c1, c∗ be specific numbers, where at least 1 of c0, c1 is nonzero. Consider the hypotheses

H0 : c0β0 + c1β1 = c∗ H0 : c0β0 + c1β1 ̸= c∗

Define

U01 =

[
c20
n

+
(c0x̄− c1)

2

s2x

]−1/2
(
c0β̂0 + c1β̂1 − c∗

σ′

)
For each 0 < α0 < 1, let δ be the test which rejects H0 when |U01| ≥ F−1

t(n−2)(1− α0/2). Then δ is a level α0 test.

Proof. The variable c0β̂0 + c1β̂1 is Normally distributed with mean c0β0 + c1β1 and variance

c20Var(β̂0) + c21Var(β̂1) + 2c0c1Cov(β̂0, β̂1) = σ2

(
c20
n

+
(c0x̄− c1)

2

s2x

)
Hence, under H0, the following variable W01 has the standard Normal distribution:

W01 =

[
c20
n

+
(c0x̄− c1)

2

s2x

]−1/2
(
c0β̂0 + c1β̂1 − c∗

σ

)

By the preceding theorem, the statistic S2/σ2 has χ2(n− 1) distribution, and is independent of β̂0, β̂1, hence

U01 =
W01√
1

n−2
S2

σ2

has t distribution with n− 2 degrees of freedom.

Note: When you call on lm() in R to create a linear model and view the summary table, THIS is the hypothesis test whose
P-value is reported.

Cor: Let β1∗ be a specific value and consider hypotheses for slope parameter of the regression model

H0 : β1 = β∗
1 H1 : β1 ̸= β∗

1

Let U1 be the test statistic

U1 = sx
β̂1 − β∗

1

σ′

and let δ be the procedure which reject H0 when |U1| ≥ T−1
n−2(1− α0/2). Then δ is a level α0 test, and the p-value for (x,y)

with observed statistic u1 is
P (U1 ≥ |u1|) + P (U1 ≤ −|u1|)
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Cor: Suppose we wish to assess whether it is plausible that the regression line y = β0 + β1x passes through a particular
point (x∗, y∗). This is equivalent to testing the hypotheses

H0 : β0 + β1x
∗ = y∗ h1 : β0 + β1x

∗ ̸= y∗

Our hypotheses are of the form c0 = 1, c1 = x∗, c∗ = y∗, and the appropriate test statistic is

U01 =

[
1

n
+

(x̄− x∗)2

s2x

]−1/2
(
β̂0 + x∗β̂1 − y∗

σ′

)

The test δ which rejects H0 when |U01| ≥ T−1
n−2(1− α0/2) is a level α0 test.

Cor: Let c0, c1 be specific numbers, where at least 1 of c0, c1 is nonzero. The interval given by

c0β̂0 + c1β̂1 ± σ′
[
c20
n

+
(c0x̄− c1)

2

s2x

]
F−1
t(n−2)

(
1− α0

2

)
is a 1− α0 level confidence interval for c0β0 + c1β1.

Proof. Let ω(x,y) be the set of all value c∗ for which H0 is not rejected at the α0 level when x,y is observed. Let

q = T−1
n−2(1− α0/2) and SE = σ′

[
c20
n + (c0x̄−c1)

2

s2x

]1/2
. Then

c∗ ∈ ω(x,y) ⇐⇒ |U01| < q

⇐⇒ − q <
c0β̂0 + c1β̂1 − c∗

SE
< q

⇐⇒ − SE · q < c0β̂0 + c1β̂1 − c∗ < SE · q

⇐⇒ c0β̂0 + c1β̂1 + SE · q < c∗ < c0β̂0 + c1β̂1 − SE · q

The result follows by noting that ω(x,Y) is a 1− α0 confidence set (by a previous theorem).

Suppose that rather creating an interval estimate for regression coefficient of the model, we wish to construct an interval
(A,B) that contains a single observation Y with specified probability 1−α0. We can slightly modify the previous procedure
to do.

Thm: Let (Y, x) be an independent observation from the model, and let Ŷ = β̂0 + β̂1x. Define an interval (A,B) by

Ŷ ± T−1
n−2(1− α0/2)σ

′
[
1 +

1

n
+

(x− x̄)2

s2x

]1/2
Then P (Y ∈ (A,B)) = 1− α0.

Proof. Since Y and Ŷ are independent Normal and E[Y ] = E[Ŷ ], then Y − Ŷ is Normal with mean 0 and variance σ +

σ
[
1
n + (x−x̄)2

s2x

]1/2
. Let

Z =
Y − Ŷ

σ
[
1 + 1

n + (x−x̄)2

s2x

]1/2 W =
S2

σ2

where Z is N(0, 1) and W is χ2(n − 2). Then Ux = Z√
W/(n−2)

is t(n − 2), and so P (|UX | < T−1
n−2(1 − α0/2)) = 1 − α0.

Inverting Ux for Y gives the desired result.

Note that this interval is very sensitive to deviations from Normality, and since Y is a single observation, rather than a
mean, we cannot rely on the CLT to improve our approximation as n gets larger.
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Model Conditions

In practice, we will rarely know for certain whether the model conditions are satisfied. It’s worth reflecting on the importance
and robustness of each condition:

1. The x values are fixed. In some designed experiments, it is reasonable to treat the values of x as fixed and controlled.
But more commonly, the values of both X and Y are random, and samples are taken from the joint distribution of X
and Y .

However, this condition was essential in deriving properties of the estimators β̂0, β̂1, σ̂
2. It turns out that for relatively

large sample sizes, the distribution of estimators does not substantially change depending on whether we treat X has
fixed or random. Perhaps the larger change is to our interpretation of the model and associated parameter.

Moreover, even if X is random, treating the values of X is fixed represents an important conceptual framework:
conditioning on observed information. Presumably, in assessing the linear model Y = β0 + β1X + ϵ, we are interested
in modeling Y as a function of the data X.

2. The relationship between X and Y is linear. This is absolutely essential. If the regression function is non-linear,
the estimates for regression coefficients and predicted values will be biased, and the prediction mean squared error will
be inflated.

3. The residuals are independent. This is also essential, not only for the shape of the sampling distribution of
estimators, but also their standard error. Time series data often has correlated residuals. The standard error for model
coefficients are often (significantly) higher than the nominal standard error using the Linear Model.

4. Residuals are Normally distributed. This condition is less important. Assuming the sample size is relatively
large, coefficient estimators β̂0, β̂1 are approximately Normally distributed (both by the CLT, as well as the asymptotic
normality of MLEs), even if the residuals themselves are not Normally distributed.

R Code Demonstration

Elections for the U.S. House of Representatives occur every two years, while elections for the U.S. president occurs every 4
years. House elections in the middle of a Presidential term are called midterm elections. One political theory suggests
that high unemployment rate corresponds to worse performance by the President’s party in midterm elections. Load the
following data, containing percent change in house seats for the president’s party, along with unemployment rate in the year
of the election. (Note that Depression Era years were excluded from this data)

library(openintro)

library(dplyr)

midterms_house <- midterms_house %>% filter(!year %in% c(1935, 1939))

house_mod <- lm(house_change ~ unemp, data = midterms_house)

summary(house_mod)

estimate std.error statistic p.value
(Intercept) -7.364 5.155 -1.429 0.165
Slope -0.890 0.835 -1.066 0.296


