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9.5 The t-test

Tests for samples from a Normal population are one of the most common hypothesis procedures. Here, we focus on the case
when both the mean µ and variance σ2 of the population are unknown.

We could start by looking at the likelihood ratio to find an MLR statistic. But unlike the case when variance is known, this
is a non-starter. Think about the hypotheses:

H0 : µ ≤ µ0 H1 : µ > µ0

What is parameter space? We actually omitted the parameter σ2 from our hypotheses. So we can’t actually use MLR to get
an efficient test. What alternatives do we have?

Recall that if X is a sample from N(µ, σ2), we can form a one-sided γ-level confidence interval for µ as

(A,∞) where A = X̄ − F−1
n−1 (γ)

S√
n

Since this should give the range of plausible values for µ, we might reject H0 in favor of H1 if µ0 < A. This procedure indeed
gives a test of size α0 = 1− γ. Explicitly, we reject H0 if

µ0 < X̄ − F−1
n−1 (γ)

S√
n

⇐⇒ X̄ − µ0

S√
n

> F−1
n−1(γ)

This is called the t-test for a population mean.

Let T = X̄−µ0
S√
n

, which has t(n− 1) when µ = µ0. Thus

P (T > F−1
n−1(γ)|µ = µ0) = P (Fn−1(T ) > γ|µ = µ0) = 1− γ

by the Universality of the Uniform. Moreover, if µ < µ0, then

T =
X − µ0

S√
n

=
X − µ

S√
n

− µ0 − µ
S√
n

= T ∗ −W T ∗ ∼ t(n− 1),W > 0

So
P (T > F−1

n−1(γ)|µ) = P (T ∗ > F−1
n−1(γ) +W |µ) < P (T ∗ > F−1

n−1(γ)|µ) = 1− γ

Hence, this procedure is indeed a size α0 = 1− γ test.

Based on the preceding arguments, we can show that the power function π(µ, σ2|δ) for this procedure δ has the following
properties:

1. π(µ, σ2|δ) = α0 when µ = µ0.

2. π(µ, σ2|δ) < α0 when µ < µ0.

3. π(µ, σ2|δ) > α0 when µ > µ0.

4. π(µ, σ2|δ) → 0 when µ → −∞.

5. π(µ, σ2|δ) → 1 when µ → ∞.

However, finding a particular formula for π(µ, σ2|δ) is more difficult. Note for example when µ < µ0,

π(µ, σ2|δ) = P (T > F−1
n−1(γ)|µ) = P (T ∗ > F−1

n−1(γ) +W |µ)

which involves random variables T ∗ and W on both sides of the inequality. That is, when µ ̸= µ0, the variable T is not
t-distributed. Instead, it is said to have the noncentral t-distribution with noncentrality parameter ncp = µ−µ0

σ/
√
n
.

Note that R can return the PDF, CDF, QF, and random variates for non-central t by adding an ncp =... argument inside
dt, pt, qt, rt.
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Nevertheless, we can still calculate p-values of an observation using facts (1) and (2) above. For a test of

H0 : µ ≤ µ0 H1 : µ > µ0

suppose we observe the statistic t = x̄−µ0

s/
√
n
. Then we would reject H0 at level α0 iff

t ≥ F−1
n−1(1− α0) ⇐⇒ Fn−1(t) ≥ 1− α0 ⇐⇒ α0 ≥ 1− Fn−1(t)

Hence, the p-value for t is 1− Fn−1(t).

Two-sided Hypotheses

Suppose instead we consider the two-sided alternative hypothesis:

H0 = µ = µ0 H1µ ̸= µ0

We can derive a α0 size test from γ = 1− α0 confidence interval, just as we did for the 1-sided test.

In this case, the t-test takes the form. Reject H0 if

|T | ≥ F−1
n−1(1− α0/2) where t =

X̄ − µ0

S/
√
n

Ex 1: A batch of stout beer is best when it has an original gravity (OG) close to 1.071. Suppose the OG of beer is N(µ, σ2).
We sample 5 OG measurements from a batch of beer and find x̄ = 1.0686 and s = 0.0064. We perform a 2-sided hypothesis
test of H0 : µ = 1.071 vs. H1 : µ ̸= 1.071. Our t-statistic is then

t =
x̄− µ0

s/
√
n

=
1.0686− 1.071

0.0064
√
5

= −0.84

At the α0 = 0.05 level, Fn−1(1−α0/2) = qt(.975, 4) = 2.78. Since |t| < 2.78, we do not reject H0. Moreover, our statistic
had p-value of

p− value = 2P (T ≥ |t|) = 2*(1-pt(.84, 4)) = 0.448

With all that said, if µ = 1.0686 and s = 0.0064, then nc = 1.0686−1.071
0.0064/

√
5

and so

P (|T | > 2.78) =1− P (T < 2.78) + P (T < −2.78)

=1-pt(2.78, ncp = nc, df = 4)+pt(-2.78, ncp = nc, df = 4)

=0.1

which shows that this test may not have particularly high power if the true parameter values are close to those actually
observed.
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9.6 Tests for Difference in Population Mean

Suppose we are interested in determining whether two the means of two distinct populations are equal. If we model the
two populations using Normal distributions with common (but unknown) variance, we can modify the t-test in the previous
section, we can create a hypothesis test for assessing whether the means of the two Normal distributions are equal.

We assume that X = (X1, . . . , Xnx
) is a random sample from N(µx, σ

2) and that Y = (Y1, . . . , Yny
) is a random sample from

N(µy, σ
2). Note that this model has 3 unknown parameters: µx, µy, σ

2. We will first test the hypotheses

H0 : µx ≤ µy H1 : µx > µy

We need to construct a test statistic which can be used to assess they hypotheses. Since X̄ and Ȳ are MLEs for µx and µy,
it makes sense to incorporate them in our test statistic. Moreover, observing a large positive difference in X̄ − Ȳ is unlikely,
if H0 is true. Of course, what values count as “large” depends on the standard deviation of X̄ − Ȳ , so it would be helpful to
scale by this as well. This leads us to defining the following test statistic T :

T =
X̄ − Ȳ√(

1
nx

+ 1
ny

)(
S2
X+S2

Y

nx+ny−2

) where S2
x =

∑
(Xi − X̄)2 S2

y =
∑

(Yi − Ȳ )2

Thm: Assuming X,Y are independent samples from N(µx, σ
2) and N(µy, σ

2) of sizes nx and ny respectively, and T is
defined as above, then T has the t-distribution with nx + ny − 2 degrees of freedom, when mux = µy.

Proof. We decompose T into two parts:

T =
Z√
W

m+n−2

where

Z =
X̄ − Ȳ√(
σ2

nx
+ σ2

ny

) W =
S2
X + S2

Y

σ2

Since X̄ and Ȳ are independent N(µx, σ
2/nx) and N(µy, σ

2/ny), respectively, then X̄ − Ȳ is N(µx − µy, σ
2/nx + σ2/ny).

Moreover, W has the χ2 distribution with nx + ny − 2 degrees of freedom, since it is a sum of nx and ny squared Normals
centered at their sample means. Finally, we note that X̄, Ȳ , S2

X , S2
Y are all mutually independent. Hence T is t-distributed,

as desired.

Thm: Consider tests δc of
H0 : µx ≤ µy H1 : µx > µy

which reject when T ≥ c. The p-value of an observed sample X,Y with T = t is

p-value = P (T ≥ t|µx = µy) = 1− Fnx+ny−2(t)

where Fnx+ny−2 is the CDF of t(nx + ny − 2).

For each value of µx, µy, σ
2, we can compute the power function for the procedure δc using a non-central t-distribution.

Thm: For µx, µy, σ
2, the statistic T defined above has the non-central t distribution with nx+ny−2 degrees of the freedom,

and noncentrality parameter:

ncp =
µx − µy√
σ2

nx
+ σ2

ny

Moreover, if δc has size α0, then the power function π(µx, µy, σ
2|δc) has the properties:

1. π(µx, µy, σ
2|δc) = α0 when µx = µy.
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2. π(µx, µy, σ
2|δc) < α0 when µx < µy.

3. π(µx, µy, σ
2|δc) > α0 when µx > µy.

While this t test has nice theoretical properties, it does have some significant drawbacks. The model assumptions that X
and Y come from Normal populations with equal variance is often inaccurate. And while deviations from Normality do not
substantially change the distribution of T when the samples are of large size, deviations from the equal variance assumption
can have substantial impact on distribution of T (even when samples are large). As a result, an alternative test can be
conducted with the following statistic:

V =
X̄ − Ȳ√

1
nx

S2
X

nx−1 + 1
nx

S2
X

nx−1

The statistic inside the square-root of the denominator:

W =
1

nx

S2
X

nx − 1
+

1

nx

S2
X

nx − 1

is approximately Gamma distributed, when nx, ny are moderate or large, and so the ratio V is approximately t distributed
with degrees of freedom (

σ2
x

nx
+

σ2
y

nx

)
1

nx−1

(
σ2
x

nx

)
+ 1

ny−1

(
σ2
y

ny

)
In general, tests of equal means using this statistic are more robust to deviations from the equal variance assumption (even
taking into account the approximation).

9.7 The F Distribution

Suppose we are in the situation of the previous section, and are interested in performing a test to assess whether two Normal
populations have equal means. In order to use the t-procedure, we need to assume that both populations have equal variance.
But how can we assess whether such a claim is valid, based on data? With another hypothesis test, of course!

Before proceeding, we must introduce another named distribution to our repertoire.

Def: Let Y and W be independent random variables where Y ∼ χ2(m) and W ∼ χ2(n). Let X be the random variable
defined as

X =
Y
m
W
n

=
nY

mW

Then X is said to have the F distribution with (m,n) degrees of freedom.

It is possible to compute the density of an F -distribution directly using the change-of-variables formula (although we will
have limited use for the precise formula). This density is included here just for completeness:

Thm: Let X have the F distribution with (m,n) degrees of freedom. Then the PDF for X is

f(x) =
Γ((m+ n)/2)

Γ(m/2)Γ(n/2)

xm/2−1

(mx+ n)m+n/2
x ≥ 0

A few properties of the F distribution are summarized below:

Thm: If X has F with (m,n) degrees of freedom, then 1/X has the F distribution with (n,m) degrees of freedom. If Y has
the t distribution with n degrees of freedom, then Y 2 has the F distribution with (1, n) degrees of freedom.

The pdf, cdf, and quantile function for an F distribution can be accessed in R using the df, pf, qf functions.
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The F Test

Suppose X is a sample of size nx from N(µx, σ
2
x) and Y is a sample of size ny from N(µy, σ

2
y), and that we are interested in

testing the claims:
H0 : σ2

x ≤ σ2
y H1 : σ2

x > σ2
y

Define a test statistic V by

V =
S2
X/(nx − 1)

S2
Y /(ny − 1)

and supposed δc are a collection of tests that reject H0 when V ≥ c.

Thm: Let V be defined as above. The variable
σ2
y

σ2
x
V has the F distribution with nx and ny degrees of Freedom. If σ2

x = σ2
y,

then V itself has this F distribution.

Proof. We previously showed that S2
X/σ2

x and S2
Y /σ

2
y have the χ2 distribution, with nx − 1 and ny − 1 degrees of freedom,

respectively. By assumption, both random variables are derived from independent samples, and so are themselves independent.
Then the following variable

S2
X/[(nx − 1)σ2

x]

S2
Y /[(ny − 1)σ2

y]
=

σ2
y

σ2
x

S2
X/(nx − 1)

S2
Y /[ny − 1)

has the F (nx − 1, ny − 1) distribution, by definition.

Thm: Let V be the statistic defined above, and let c be the 1 − α quantile of the F (nx − 1, ny − 1) distribution, and let
Gnx−1,ny−1 be the CDF of this distribution. Consider the test δα which rejects H0 when V ≥ c. Then the power function
for this procedure satisfied:

1. π(µx, µy, σ
2
x, σ

2
y|δc) = 1−Gnx−1,ny−1

(
σ2
y

σ2
x
c
)

2. π(µx, µy, σ
2
x, σ

2
y|δc) = α0 when σ2

x = σ2
y.

3. π(µx, µy, σ
2
x, σ

2
y|δc) < α0 when σ2

x < σ2
y.

4. π(µx, µy, σ
2
x, σ

2
y|δc) > α0 when σ2

x > σ2
y.

Moreover, the test δα is has size α and the p-value when V = v is observed is 1−Gnx−1,ny−1 (v).

We can also construct a two-sided F -test of the following hypotheses:

H0 : σ2
x = σ2

y H1 : σ2
x ̸= σ2

y

In this case, for α > 0, consider the procedure δα which rejects H0 if either V ≤ c1 or V ≥ c2, where c1, c2 are the α/2 and
1− α/2 quantiles of the F (nx − 1, ny − 1) distribution.

It turns out that this two-sided test is biased (i.e. the minimum value of the power function on the alternative set is smaller
than the maximum value on the null set). Additionally, we cannot express the rejection region as T ≥ c, for some single
statistic T . For this reason, the classic 209/310 definition of p-value does not work (but our modified p-value definition does
work).

Thm: Let V be defined as above, and consider a collection of tests δα defined above. Then the p-value when V = v is
observed is

2min
{
1−Gnx−1,ny−1(v), Gnx−1,ny−1(v)

}
Proof. Homework.


