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9.1 Framework for Testing Hypotheses

Hypotheses and Power

Suppose I toss a coin 10 times, and then truthfully tell you that all 10 flips were heads. What are the possible explanations?

1. Chance: The coin is fair, the tosses were independent, but we observed a rare but not impossible even. (We should
see this result about once in every 210 ≈ 1000 flips).

2. Bias: The coin isn’t fair, but rather, the coin has a high probability of landing heads (closer to 1 than 1
2 .

3. Dependence: The coin flips aren’t actually independent. Maybe I got lazy and just flipped the coin once and wrote
down the result 9 times.

Which of these outcomes is most likely? It’s impossible to say without assigning prior probabilities.

However, we could ask: for which of these possibilities was the data most consistent? In this case, the observed event would
be considered rare if the coin flips were independent and unbiased. But it would be rather mundane if the coin is either
biased towards heads, or the flips were dependent.

When choosing among possible hypotheses, we gravitate towards those for which the observed data was commonplace.
(Rightly or wrongly) This is the framework for the hypothesis test.

Def: Let P be a statistical model with parameter space Ω, and let Ω1,Ω2 be a partition of Ω. The null hypothesis is
the claim H0 : θ ∈ Ω0 and the alternative hypothesis is the claim H1 : θ ∈ Ω1. If Ωi consists of a single value, we say
that Hi is a simple hypothesis. Any hypothesis that is not simple is a composite hypothesis. In the special case when
Hi is an interval of the form (a,∞) or (−∞, a), then we say it is a one-sided hypothesis. And when Hi is of the form
(−∞, a) ∪ (a,∞) we say that Hi is a two-sided hypothesis.

Ex 1: Suppose we want to test whether a coin is fair. Our model assumes the sample X are conditionally independent
Bernoulli-θ variables, with parameter space Ω = [0, 1]. Our hypotheses are

H0 : θ = 0.5 Ha : θ ̸= 0.5

That is, Ω0 = {0.5} and Ω1 = [0, 0.5) ∪ (0.5, 1].

Our ultimate goal is to use data to draw a conclusion about the plausibility of H0 and H1, gravitating towards the hypothesis
for which the data is most consistent.

Ex 2: Continuing with the coin flip example above, we might flip a coin 10 times and compute the number of heads
∑

Xi

observed. If
∑

Xi is far from 5, it seems reasonable to reject H0 in favor of H1. In particular, perhaps we decide to use the
rule “if |

∑
Xi − 5| > 3, then we will reject H0.”

Note that this divides our sample space S into two disjoint regions:

S0 = {x ∈ S :
∣∣∣∑xi − 5

∣∣∣ ≤ 3} S1 = {x ∈ S :
∣∣∣∑xi − 5

∣∣∣ > 3}

That is, S0 consists of all observed data x where we do not reject H0 and where S1 consists of observed data where we do
reject H0.

Def: A Hypothesis Test Procedure δ is a specification of:

• a parameterized model P for the data;

• hypotheses H0 and H1 which partition the parameter space Ω into two parts Ω0 and Ω1;
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• a partition of the sample space S into two parts S0 and S1, where S1 is called the critical region and represents the
samples for which we reject H0.

In many cases, we will just use the values of a particular statistic T (X), rather than the entire sample data X, to determine
the partition of the sample space S. In this case, we call T (X) a test statistic, and call R = T (S1) ⊂ R the rejection
region.

Ex 3: Using the coin flip model, let T (X) = |
∑

Xi − 5|. With n = 10, we might decide that R = (3,∞). That is, we reject
H0 if T > 3.

Once a hypothesis procedure δ has been specified, we can investigate the probability that the test rejects H0.

Def: Let δ be a test procedure. Define π(θ|δ) to be the function of θ given by

π(θ|δ) = P (X ∈ S1 | θ)

That is, π(θ|δ) is the probability of rejecting H0, if the true value of the parameter is θ. We say that π(θ|δ) is the power
function of the test δ.

An ideal power function would be one with

π(θ|δ) =

{
1, θ ∈ Ω1,

0, θ ∈ Ω0

That is, a power function corresponding to a test that always rejects H0 when it is false, and that never rejects H0 when it
is true. In practice, however, we will never have power functions with this property (otherwise, a sample of data would give
us perfect information about the parameter).

In general, we can make two types of errors when performing a hypothesis test:

H0 true H1 true
Reject H0 type I error Correct

Do not Reject H0 Correct type II error

If θ ∈ Ω0, the power function is the probability of a type I error. While if θ ∈ Ω1, the probability of a type II error is
1− π(θ|δ).

All else equal, we want a test procedure for which π(θ|δ) is close to 0 for θ ∈ Ω0 and π(θ|δ) is close to 1 for θ ∈ Ω1.

Ex 4: Consider the naive test procedure which is S1 = S. Then

π(θ|δ) =

{
1, θ ∈ Ω0

0, θ ∈ Ω1

Ex 5: Suppose a sample X of size n is drawn from a Normal population with unknown mean µ and known variance σ2 and

consider hypotheses H0 : µ = µ0 and H1 : µ ̸= µ0. Let T = |X̄−µ0|
σ/sqrtn and let S1 = [c,∞) for some c > 0. Then

P (T ∈ S1|µ) =P

(
|X̄ − µ0|
σ/

√
n

> c
∣∣∣µ)

=P

(
X̄ ≥ µ0 +

σ√
n
c
∣∣∣µ)+ P

(
X̄ ≤ µ0 −

σ√
n
c
∣∣∣µ)

=P

(
X̄ − µ

σ/
√
n

≥ µ0 − µ+ σ/
√
nc

σ/
√
n

∣∣∣µ)+ P

(
X̄ − µ

σ/
√
n

≤ µ0 − µ− σ/
√
nc

σ/
√
n

∣∣∣µ)
=1− Φ

(
µ0 − µ+ σ/

√
nc

σ/
√
n

)
+Φ

(
µ0 − µ− σ/

√
nc

σ/
√
n

)
The following graph shows power curves for µ0 = 0, n = 16, and σ2 = 1, for c = 1, 2, 3.
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What is the probability of a type I error for each of the values of c above?

π(µ = 0|δ) = 1− Φ (c) + Φ (−c) = 2Φ (−c)

C π(µ = 0|δ)
1 0.317
2 0.046
3 0.003

Significance Level and Size

Def: Suppose there is a constant α0 > 0 so that π(θ|δ) ≤ α0 for all θ ∈ Ω0. Then δ is said to be a level α0 test. The size
of a test is

α(δ) = sup
θ∈Ω0

π(θ|δ)

If H0 is a simple hypothesis with Ω0 = θ0, then α(δ) = π(θ0|δ).

Cor: A test δ is a level α0 test if and only if its size is at most α0. If the null hypothesis for δ is simple, then δ is a level α0

test if and only if π(θ0|δ) ≤ α0.

When choosing among a variety of hypothesis procedures, we might seek a test which has maximal power function for θ ∈ Ω1

among all test that satisfy π(θ|δ) ≤ α0 for θ ∈ Ω0.

Ex 6: Returning to the coin flip, let’s say that we flip n = 100 times, using the one-sided hypothesis H1 : θ > 0.5 (why?)
and the critical region S1 = {X ≥ 55}. Then

π(θ|δ) = P (X ≥ 55|θ = .5) = 0.1587

If θ < 0.5, then π(θ|δ) < 0.1587 and so the size of the test is 0.1587. Can we make δ a α = .05 significance test?

Let’s approximate T (X) using the Normal distribution (valid by CLT) and consider δ : S1 = {T ≥ c}.

α(δ) = sup
θ∈Ω0

π(θ|δ) = sup
θ∈Ω0

P (T ≥ c|θ) = sup
θ∈Ω

1− Φ

(
c− 100θ√
100θ(1− θ)

)

Note that 1− Φ

(
c−100θ√
100θ(1−θ)

)
is an increasing function of θ and a decreasing function of c.

Therefore,

sup
θ∈Ω

1− Φ

(
c− 100θ√
100θ(1− θ)

)
= 1− Φ

(
c− 50

5

)
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We now want to choose the smallest c so that

0.05 ≥ α(δ) = 1− Φ

(
c− 50

5

)
Solving for c, we get

c− 50

5
≥ Φ−1(1− .05) c ≥ 50 + 5Φ−1(1− .05) ≈ 58.22

More generally, for significance α0, if we let T = X−nθ0√
θ0(1−θ0)/n

be our test statistic, then we reject if

T ≥ Φ−1(1− α0)

P-values

In a statistical investigation using a test procedure δ of level α, we will observe data x and report whether or not we rejected
the null hypothesis. But in doing so, we fail to convey information about how extreme our data was. If we used a slightly
modified test procedure at level α′ < α, would we still have rejected the null hypothesis with this data? What is the most
stringent level of evidence (i.e. the smallest value of α) at which we still would have rejected the H0?

Def: (DeGroot and Schervish) The p-value is the smallest level α0 such that we would reject the null-hypothesis at level
α0 with the observed data.

This definition is problematic. It is intended to allow us to define p-values for a very general class of test procedures, but it
is actually too general, as the following counterexample shows:

Ex 7: Suppose we have a test procedure δ where the test statistic T (X) has a continuous distribution. Suppose moreover
that we observe the statistic T (X) = t. Consider a different procedure δ′ which has the same hypotheses, same partition
of Ω, and same test statistic formula, but that uses rejection region S1 = {t}. This procedure has size 0 and therefore, is a
level α = 0 test. However, it is also a test where we would reject the null hypothesis if we observed the statistic t. By the
definition in Degroot and Schervish, the statistic t has a p-value of 0. But this is true for all t.

We need to focus on a reduced collection of procedures. This isn’t a problem in practice, since we are usually only interested
in deciding rejection regions from among similar options (for example, rejection regions for the form [c,∞) for some value of
c).

Def: (STA 336) Let {δc} be a collection of hypothesis tests where δc has size αc, such that for αc < αc′ , if δc rejects H0

when x is observed, then δc′ also rejects H0 when x is observed. The p-value for the observed sample x is the smallest level
α0 such that x is in the rejection region for δc.

Ex 8: Let X1, . . . , X10 be a random sample from Unif(θ, θ+1). To test H0 : θ = 0 versus H1 : θ > 0, we consider a collection
of tests {δc} for 0 < c < 1 where δc rejects H0 if

max{X1, . . . , X10} ≥ 1 or min{X1, . . . , X10} ≥ c

Suppose we observe x with min{xi} = 0.1 and max{xi} = .5. What is the p-value for this statistic?

Solution. Since H0 is simple, the size of δc is P (H0 is rejected|θ = 0). Note that if θ = 0, then max{Xi} ≤ 1. So

α(δc) = P (H0 is rejected|θ = 0) = P (min{Xi} ≥ c|θ = 0) =
∏

P (Xi ≥ c|θ = 0) = (1− c)10

Note that the size of the test α(δc) decreases as c increases. Now, we reject H0 for any procedure where c ≤ 0.1. So the
smallest sized test where we rejectH0 if we observed min{xi} = 0.1 is α = (1−.1)n. Hence, the p-value for x is .910 = 0.35. ■
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Informally, the p-value of a sample is the probability of obtaining another sample at least as extreme as the one observed, if
the null hypothesis were true:

Thm: Consider a simple null hypothesis H0 : θ = θ0. Let T (X) be a test statistic and consider a collection of tests {δc} of
the form δc: “Reject H0 if T ≥ c”. Suppose T (x) = t. Then the p-value for this observed sample is

p-value = P (T ≥ t|θ0).

More generally, for a composite null hypothesis H0 : θ ∈ Ω0, then the p-value for the observed sample is

p-value = sup
θ∈Ω0

P (T ≥ t|θ).

Proof. Homework Exercise.

Ex 9: Suppose we observe X = 52 in a sequence of 100 flips of a coin. We calculated before that

α(δt) = 1− Φ

(
t− 50

5

)
and so the p-value of the statistic X = 52 is

p = 1− Φ

(
52− 50

5

)
= 1− Φ

(
2

5

)
= 0.34

On the other hand, if we observed X = 62, then

p = 1− Φ

(
62− 50

5

)
= 1− Φ

(
12

5

)
= 0.0082



STA 336 Hypothesis Testing Spring 2023

Equivalence of Tests and Confidence Sets

Def: Let ω(X) be a random set, let g be a function, and let 0 ≤ γ ≤ 1. Then ω(X) is said to be a γ-confidence set for
g(θ) if, for every θ0 ∈ Ω,

P (g(θ0) ∈ ω(X) | θ = θ0) ≥ γ

Thm: Let X be a random sample from a distribution with parameter θ, let g(θ) be a function.

1. Suppose that for each value θ0 of θ, there is a level α0 test δθ0 of the hypotheses

H0 : θ = θ0 H1 : θ ̸= θ0

For each observed sample X = x, define

ω(x) = {θ0 | δθ0 does not reject H0 if X = x}

Let γ = 1− α0. Then the random set ω(X) is a γ-confidence set for g(θ).

2. Let ω(X) be a γ-confidence set for g(θ). For each value θ0 of θ, construct a test δθ0 of the hypotheses

H0 : θ = θ0 H1 : θ ̸= θ0

so that δθ0 does not reject H0 iff θ0 ∈ ω(X). Then δθ0 is a α0 = 1− γ test of the hypotheses.

Ex 10: Suppose we wish to create a confidence interval for the probability p that coin flips Heads. We will consider a
collection of tests of the hypotheses

H0 : p = p0 Ha : p ̸= p0

And will do so by flipping the coin n times and observing the number of heads X. For each value p0, we can find a test δp0

of level α0 the form “reject H0 when X ≥ F−1
n,p0

(1− α0/2) or when X ≤ F−1
n,p0

(α0/2)

Suppose we observe data X = x (i.e. x heads out of n). Among our tests, we do not reject H0 if

F−1
n,p0

(α0/2) < x < F−1
n,p0

(1− α0/2)

ALthough there is not a closed form for these p0, for specific values of x, n, and α0, we can search across values of p0 for
which this inequality is satisifed. These p0 will then correspond to our confidence interval.

Ex 11: A batch of stout beer is best when it has an original gravity (OG) close to 1.071. Suppose the OG of beer is N(µ, σ2).
We sample 5 OG measurements from a batch of beer and find x̄ = 1.0686 and s = 0.0064. The γ-level confidence interval for
µ is

1.068± F−1
4

(
1 + γ

2

)
0.0064√

5

For each µ0, we construct a α0 = 1− γ test of the hypotheses

H0 : µ = µ0 H1 : µ ̸= µ0

where we reject H0 if µ0 is not in the preceding interval. Note moreover that this occurs exactly when

|1.086− µ0|
.0064/

√
5

≥ F−1
4

(
1 + γ

2

)
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Likelihood Ratio Tests

The likelihood ratio tests are probably the most frequently used tests in statistics. And there are several reasons for this:

1. In many cases, tests based on likelihood ratios have relatively high power (often, they are either the UMP or the UMP
subject to extra restrictions)

2. The likelihood ratio is defined for general parametric models, so can be constructed without needing to find a specialized
test for a given model

3. Test based on likelihood ratios are intuitive: we choose the hypothesis that is most consistent with the data!

4. Under general regularity conditions, the asymptotic distribution of the likelihood ratio is known.

Def: Suppose X is a sample from a distribution parameterized by θ, with joint PDF f(x|θ). Consider general hypotheses
of the form

H0 : θ ∈ Ω0 H1 : θ ∈ Ω1

The likelihood ratio is the statistic

Λ(x) =
supθ∈Ω0

f(x|θ)
supθ∈Ω f(x|θ)

.

Informally, the likelihood ratio test measures the relatively consistency of the data in the the null model compared to the
full model. By construction, 0 ≤ Λ(x) ≤ 1. Values close to 0 indicate that the data was much less likely to occur under the
null hypothesis than under the full model, while values close to 1 indicate either the data was as likely to occur under the
null as the full model.

Hence, small values of Λ(x) provide compelling evidence against the null hypothesis.

Def: A Likelihood Ratio Test of H0 : θ ∈ Ω0 against H1 : θ ∈ Ω1 is a procedure that rejects H0 if Λ(x) ≤ k for some
constant k.

Ex 12: Suppose I want to test whether a given coin is fair after observing n flips. That is,

H0 : θ = 0.5 H1 : θ ̸= 0.5

Let X be the number of heads observed, with likelihood function

f(x|θ) = θx(1− θ)n−x

Note we dropped the coefficient that doesn’t depend on θ. The likelihood ratio is then

Λ(x) =
θx0 (1− θ0)

x

supθ∈Ω θx(1− θ)x
=

0.5n

(x/n)x(1− x/n)n−x
=

(0.5n)n

xx(n− x)n−x

since the MLE for θ is x
n .

Suppose I want a test at the 0.05 level with n = 100. We can use R to compute the value of the statistic Λ for each value
of x and use the PMF of x to find the PMF of Λ. Alternatively, we can use simulation to sample from x a large number of
times to generate an approximate distribution for Λ, and compute the 0.05 quantile.

Doing the latter, I ended up with k = 0.134. Incidentally, this corresponds to getting more than 60 or less than 40 heads.


