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8.6 Bayesian Credible Intervals

Recall that an interval estimator for a parameter θ consists of a pair of statistics A(X) and B(X) so that A < θ < B with a
particular probability γ. To find the frequentist confidence interval for θ, we had to either:

1. Find and invert the pivotal quantity

2. Use bootstrapping

We now consider interval estimates from the Bayesian perspective. As Bayesian, we treat θ as a random variable, with prior
distribution ξ(θ). After observing the data x, θ has a posterior distribution ξ(θ|x).

Our goal is to use a sample x and find A(x) and B(x) so that

P
(
A(x) < θ < B(x)|x

)
= γ

Doing so is rather straightforward, if we have the posterior PDF! Note that the statistics A and B are just two specific
quantiles of the posterior distribution θ|x.

There are many choices for these quantiles:

1. Equal area: A is the 1−γ
2 quantile and B is the 1+γ

2 quantile.

2. Mean as center point: A,B = E[θ|x]± c

3. Narrowest interval: A and B bound the highest points of the posterior density.

Of these, the first method is often most common.

The textbook calls Bayesian interval estimates posterior intervals, although most Bayesian literature refers to them as
credible intervals.

Ex 1: Let’s return to the mystery envelope containing red and blue tickets, where θ denotes the proportion of red tickets.
We will draw 10 more tickets from the bag and use the results to make a prediction about θ. Let X denote the number of
red tickets drawn and note that X|θ ∼ Bin(10, θ).

Using the Beta-Binomial conjugacy, it is reasonable to provide a Beta prior for θ. Several weeks ago, we drew 8 tickets from
the bag, and obtained 6 red and 2 blue. We’ll use this information to form our prior: θ ∼ Beta(6, 2).

Note that before we collect any further data, we can create a prior interval for θ. Suppose we want to create 95% interval
using the equal areas method. Then A and B are the 0.025 and 0.975 quantiles of Beta(6, 2), which we can compute using R

qbeta(c(0.025, 0.975), 6,2)

# 0.421 0.963

Hence, there is 95% probability that θ is between 0.421 and 0.963.

Of course, we can improve our estimate and shorter the length of this interval by collecting more data. Suppose that in 10
further draws, we get X = 8. Then θ|X = 8 ∼ Beta(14, 4), and so the new posterior interval is (0.566, 0.932), computed in
R using

qbeta(c(0.025, 0.975), 14,4)

# 0.566 0.932

Visualizations of the prior and posterior distributions, along with the corresponding credible intervals, are shown below:
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Samples from a Normal Distribution

Now, assume that x is conditionally iid Normal, given θ = (µ, σ2). Previously, we found the posterior distribution of µ|x
with known σ2. But in a typical setting, if we don’t know µ, then we also won’t know σ2. To find a joint posterior on
µ, σ2|x, we need two priors.

Def: The precision of a Normal distribution is τ = 1
σ2 .

Then

f(x|µ, τ) =
( τ

2π

)1/2
exp

{
−τ

2
(x− µ)2

}
f(x|µ, τ) =

( τ

2π

)n/2
exp

{
−τ

2

∑
(xi − µ)2

}
In order to implement Bayesian inference procedures, we need to find a family of conjugate joint priors for these parameters.

Thm: Let X ∼ N(µ, 1/τ), with priors µ|τ and τ

µ|τ ∼N(µ0, 1/(λ0τ))

τ ∼Gamma(α0, β0)

Then the posteriors on µ|τ and τ are

µ|τ ∼N(µ1, 1/(λ1τ))

τ ∼Gamma(α1, β1)

where

µ1 =
λ0µ0 + nx̄

λ0 + n
λ1 = λ0 + n α1 = λ0 +

n

2
β1 = β0 +

1

2

∑
(xi − x̄)2 +

nλ0(x̄− µ0)
2

2(λ0 + n

Proof. Use Bayes Theorem and complete the square in the exponent. Proceed analogous to the case when µ is unknown and
σ is known.

Def: We say that a vector (X,T ) has Normal-gamma distribution with parameters (µ, λ, α, β) if X|Y is conditional
N(µ, 1/(λY )) and Y is marginally Gamma(α, β). The PDF for (X,Y ) is therefore

fX,T (x, τ) = fX|T (x|t)fT (τ) =
βα

√
λ

Γ(α)
√
2π

τα−1/2e−βτ exp

{
−λτ(x− µ)2

2

}
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The preceding theorem says that the Normal-Gamma distribution is a conjugate prior for samples from Normal distribution
with unknown mean and precision.

Thm: SupposeX are conditionally iid N(µ, 1/τ) with priors from a Normal-Gamma distribution as in the preceding theorem.
Then the marginal distribution of µ can be expressed as√

λ0α0

β0
(µ− µ0) ∼ t(2α0)

Proof. Let Z =
√
λ0τ(µ− µ0) and observe that Z|τ ∼ N(0, 1). We can express the joint density of Z and τ in terms of the

conditional density fZ|τ of Z|τ and the marginal density fτ of τ :

f(z, τ) = fZ|τ (z|τ)fτ (τ) = φ(z)fτ (τ)

which shows that Z and τ are independent. Let Y = 2β1τ and note that ∼ χ2(2α0). Define a variable U as

U =

√
λ0α0

β0
(µ− µ0) =

√
λ0τ(µ− µ0)√

2β0τ
2α0

=
Z√
Y
2α0

which is t distributed with 2α0 degrees of freedom.

Note that the marginal posterior distribution of µ can be obtained in a similar fashion by using the parameters λ1, α1, β1, µ1.

Now, to obtain a γ probability credible interval, let U =
√

λ1α1

β1
(µ− µ1) and let c be such that P (−c < U < c|x) = γ. Then

γ =P (−c < U < c)

=P

(
−c <

√
λ1α1

β1
(µ− µ1) < c

)

=P

(
µ1 − c

√
λ1α1

β1
< µ < µ1 + c

√
λ1α1

β1

)

which gives the γ probability Credible Interval for µ.


