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7.3 Conjugate Priors

Previously, we observed that using a Beta(3, 1) prior with Geometric sampling produced a posterior distribution that was
also Beta distributed. This was not an accident, and in fact, if we had chosen a different Beta prior, we also would have
ended up with a beta posterior.

Suppose instead of performing a single experiment where X ∼ Geom(θ), that we performed a different experiment, sampling
n times where each X1, . . . , Xn ∼ Bern(θ), conditionally independent given θ. Note that one way to write the PMF of Xi is

f(xi) = θxi(1− θ)1−xi for xi ∈ {0, 1}

Then the conditional distribution for X|θ is

f(x|θ) = f(x1|θ)f(x2|θ) · · · f(xn|θ) = θx1+···+xn(1− θ)n−(x1+x2+···+xn)

Letting x = x1 + · · ·+ xn, then the posterior distribution of θ|X = x is

ξ(θ |x) ∝ θx(1− θ)nξ(θ)

So if the prior is of the form

ξ(θ) ∝ θa−1(1− θ)b−1

then the posterior will be of the form

ξ(θ |x) ∝ θx+a−1(1− θ)n−x+b−1

and so θ|X = x ∼ Beta(x+ a, n− x+ b).

Def: Let X1, X2, . . . be conditionally iid given θ, with common distribution f(x|θ) and let Ψ be a family of distributions
indexed by parameter space Ω. Suppose that, for any prior distribution ξ ∈ Ψ, for any number of observations X =
(X1, . . . , Xn), and for any observed values of these observations x = (x1, . . . , xn), the posterior distribution ξ(θ|x) is also a
member of Ψ. Then Ψ is called a conjugate family of prior distributions for samples from the distribution f(x|θ).

Thm: The family of beta distributions is a conjugate family of prior distributions for samples from a Geometric distribution.

Before we present the next example, we should discuss an algebraic trick that will be useful in that example, as well as many
more to come.

Thm: Let x1, . . . , xn be a list of numbers with mean x̄ and let a be an arbitrary number. Then

n∑
i=1

(xi − a)2 = n(x̄− a) +

n∑
i=1

(xi − x̄)2

That is, the sum of squared distances between the xi and a fixed number a can be calculated as a sum of squared distances
between the xi and their mean, and and the distance from the mean to the fixed number a.

Note: It is possible to restate this equation using the notion of distances in vector spaces!
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Proof. We proceed by creatively adding 0 to an expression, and then expanding the square:

n∑
i=1

(xi − a)2 =

n∑
i=1

(xi − x̄+ x̄− a)2

=

n∑
i=1

(
(xi − x̄) + (x̄− a)

)2
=

n∑
i=1

(xi − x̄)2 + 2

n∑
i=1

(xi − x̄)(x̄− a) +

n∑
i=1

(x̄− a)2

=

n∑
i=1

(xi − x̄)2 + 2(x̄− a)

n∑
i=1

(xi − x̄) + n(x̄− a)2

=n(x̄− a)2 +

n∑
i=1

(xi − x̄)2 + 2(x̄− a)

(
n∑

i=1

xi −
n∑

i=1

x̄)

)

=n(x̄− a)2 +

n∑
i=1

(xi − x̄)2 + 2(x̄− a)

(
n∑

i=1

xi − nx̄)

)

=n(x̄− a)2 +

n∑
i=1

(xi − x̄)2 + 0

Ex 1: Suppose we want to predict the high temperature in Grinnell on the 1st of February. We have n historical recorded
temperatures for this day, which we’ll treat as a random sample. Based on natural weather trends and domain knowledge, we
have good reason to believe that temperature values on a given day are Normally distributed with some mean θ and variance
σ2.

What is parameter space Ω?

Suppose we know (based on national weather data) that the variance is σ2 = 9, so only the mean θ is unknown.

What are some priors we could put on θ?

One possible prior is N(µ, ν2). Suppose in particular, we take µ = 30 and ν2 = 4, obtained by estimating θ to be 30, but
with some uncertainty in our belief.

Note the difference between the parameter(s) we are building priors for (θ, in this case), and the parameters
of the prior distribution, called hyperparameters (µ and ν2, in this case).

Returning to the general case with prior N(µ, ν2), let’s compute the posterior distribution. Let x = (x1, . . . , xn) denote the
n observations. Then

f(x|θ) =
(

1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2

}

∝ exp

{
− 1

2σ2

(
n(θ − x̄)2 +

n∑
i=1

(xi − x̄)2

)}
∝ exp

{
− n

2σ2
(θ − x̄)2

}

By assumption, we have a Normal prior:

ξ(θ) ∝ exp

{
− 1

2ν2
(θ − µ)2

}
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Therefore, the posterior distribution is

ξ(θ|x) ∝f(x|θ)ξ(θ)

∝ exp

{
− n

2σ2
(θ − x̄)2 − 1

2ν2
(θ − µ)2

}

note:
n

σ2
(θ − x̄)2 +

1

ν2
(θ − µ)2 =

1

ν21
(θ − µ1)

2 +
n

σ2 + nν2
(x̄− µ)2

where µ1 =
σ2µ+ nν2x̄

σ2 + nν2
ν21 =

σ2ν2

σ2 + nν2

ξ(θ|x) ∝ exp

{
− 1

2ν21
(θ − µ1)

2

}

θ|x ∼N(µ1, ν
2
1)

Ex 2: Suppose in the previous example we observe that x̄ = 25 with n = 16. What is our posterior distribution?

µ1 =
9 · 30 + 16 · 4 · 25

9 + 16 · 4
≈ 25.62 ν21 =

9 · 4
9 + 16 · 4

≈ 0.49 ≈ (0.7)2

What effect do ν2, σ2, n and x̄ have on the posterior?

1. µ1 is the weighted average of the prior mean and the sample mean.

2. The only way the data enters is the calculation is via the sample mean x̄.

3. For fixed ν20 and σ2, larger sample sizes will weight x̄ more heavily.

4. For fixed values of ν20 and n, the larger the variance of each observation σ2, the smaller the relative weight given to x̄.

5. For fixed σ2 and n, the larger the variance ν20 of the prior distribution, the larger the relative weight given to x̄.

6. The variance of the posterior doesn’t depend on the observed values; only on their number.

7. What happens if we take ν2 → ∞?

µ1 =
σ2

σ2 + nν2
µ+

nν2

σ2 + nν2
x̄ ν21 =

σ2

n

ν2

σ2

n + ν2

So

µ1 → x̄ ν21 → σ2

n

That is, with ν2 = ∞, our posterior is determined completely by the sample mean and sample variance. This is
an example of an improper prior—a prior “distribution” which is not a valid probability distribution, but which
nonetheless gives a valid posterior distribution.

Additional Conjugate Priors

Thm: The family of Beta distributions is a conjugate family of prior distributions for samples from a Bernoulli-θ distribution.

Thm: The family of Gamma distributions is a conjugate family of prior distributions for samples from a Poisson-θ distribu-
tion.

Thm: The family of Beta distributions is a conjugate family of prior distributions for samples from Geometric-θ distribution.


