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8.5 Confidence Interval

Suppose X1, . . . , Xn are a sample from a Normal population with mean µ and variance σ2 (both unknown). Consider the
following estimators X̄ and S for µ and σ:

X̄ =
1

n

∑
Xi S =

√
1

n− 1

∑
(Xi − X̄)2

Previously, we have shown than X̄ is the MLE for µ, and that S2 is an unbiased estimator for σ2 (it turns out that S is
neither the MLE, nor an unbiased estimator, for σ).

So if we are interested in estimating the value of µ given a sample, there are good reasons to use X̄ to do so.

However, there is one drawback to using X̄ to estimate µ (or really, using any estimator to estimate a paramter).

If θ̂(X) has a continuous joint density function, then

P (θ̂ = θ) = 0.

This is the case if θ̂ = X̄, for example, since X̄ ∼ N(µ, σ2/n). That is, we know with absolute certainty that our estimated
value of the parameter is incorrect.

To rectify this, we may instead consider interval estimators for a parameter. These interval estimators represent a pair of
statistics A(X), B(X) with A < B that we can use to bound the parameter θ. That is, we will produce an estimate of the
form (A,B) and say that θ is likely to be in the interval (A,B). If choose the endpoints of interval wisely, then there will be
a positive probability that the interval actually contains the unknown parameter:

P (A(X) < θ < B(X))) > 0

Moreover, we can control the probability that the interval contains the parameter by manipulating the length B − A and
location of the interval.

We’ll first see how to do this in the case of the Normal distribution. We know that the variable T given by

T =
X̄ − µ

S/
√
n

has t-distribution with n− 1 degrees of freedom. For each 0 < γ < 1, let cγ be the constant so that

P (−cγ < T < cγ) = 1− γ

Since T is symmetric around 0, then

γ = P (−cγ < T < cγ) = 1− P (T ≤ −cγ)− P (T ≥ cγ) = 1− 2P (T ≥ cγ)

and so

P (T ≥ cγ) =
1− γ

2
⇐⇒ 1− P (T < cγ) =

1− γ

2
⇐⇒ P (T < cγ) =

1 + γ

2

Hence, cγ is the 1+γ
2 quantile of the t(n− 1) distribution; that is, cγ = F−1

n−1

(
1+γ
2

)
where Fn−1 is the CDF and F−1

n−1 is the
quantile function of the t(n− 1) distribution.

Why are we interested in the quantiles of the t distribution?

Note that by arithmetic operations on inequalities,

−cγ < T < cγ ⇐⇒ −cγ <
X̄ − µ

S/
√
n

< cγ ⇐⇒ − X̄ − cγ
S√
n
< −µ < −X̄ + cγ

S√
n

⇐⇒ X̄ + cγ
S√
n
> µ > X̄ − cγ

S√
n
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and so

γ = P (−cγ < T < cγ) = P

(
X̄ − cγ

S√
n
< µ < X̄ + cγ

S√
n

)
Let A and B denote the random variables:

A = X̄ − cγ
S√
n

B = X̄ + cγ
S√
n

Observe that since X̄ and S are statistics, and since cγ is a constant that only depends on the t(n − 1) distribution (and
hence, depends only on the sample size), then A and B are statistics.

Moreover, with probability γ, the random variables A and B satisfy

A < µ < B

Or, alternatively, the fixed parameter µ is in the random interval (A,B) with probability γ.

Def: Let X be a random sample from a distribution with parameter θ. Let g(θ) be a real-valued function of θ. Let A ≤ B
be two statistics with the property that for all values of θ,

P (A < g(θ) < B) ≥ γ

Then the random interval (A,B) is called a confidence γ confidence interval for g(θ). If the inequality for γ is actually an
equality, then the confidence interval is called exact. After the values of the random sample X = x have been observed, and
the values A = a and B = b are computed, the interval (a, b) is called the observed value of the confidence interval.

Thm: Let X be a random sample from N(µ, σ2). Consider estimators X̄ and S for µ and σ:

X̄ =
1

n

∑
Xi S =

√
1

n− 1

∑
(Xi − X̄)2

For each 0 < γ < 1, then interval (A,B) with the following endpoints is an exact confidence interval for µ:

A = X̄ − F−1
n−1

(
1 + γ

2

)
S√
n

B = X̄ + F−1
n−1

(
1 + γ

2

)
S√
n

where F−1
n−1 is the quantile function for the t-distribution with n− 1 degrees of freedom.

Ex 1: A batch of stout beer is best when it has an original gravity (OG) close to 1.071. The particular OG of a batch
depends on a number factors (like temperature, rest time, recipe, etc.) but is (approximately) Normally distributed. Suppose
we sample 5 OG measurements from a batch of beer:

1.067 1.060 1.077 1.072 1.067 with x̄ = 1.0686 and s = 0.0064

Using this sample of 5 OG measurements from a batch of beer, construct a 95% confidence interval for µ.

For any given confidence level γ, it is possible to construct infinitely many confidence intervals (A,B) so that P (A < µ <
B) = γ. However, among all such intervals, the symmetric interval has the shortest length.

But there are cases we may be interested in an asymmetric interval.

Def: A one-sided γ confidence interval for g(θ) is a random interval of the form (A,∞) of (−∞, B) so that

P (A < g(θ)) ≥ γ or P (g(θ) < B) ≥ γ

That is, one-sided confidence intervals provide lower or upper bounds (but not both) for the parameter.

Ex 2: Using the sample of 5 OG measurements from a batch of beer, construct a 90% lower confidence interval for µ.
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We must be careful interpreting confidence intervals. Before a sample is taken, we can make statements like “There is a 95%
probability that the confidence interval (A,B) contains the unknown parameter µ”. But after the sample X = x is observed
and the confidence interval (a, b) computed, we cannot say “There is a 95% chance the mean µ is in the interval (a, b).”

Why? The latter statement contains no source of randomness. The only thing that is unknown is µ. We could, of course,
adopt a Bayesian perspective and treat µ as random. But we would then need a prior for µ.

And moreover, it would still not likely be the case that there is 95% probability that µ is in (a, b), since this statement
wouldn’t reflect the update to our prior based on the observed data. For example, if we have reason to believe that µ is
relatively small (for example, between −106 and 106) and we obtain a confidence interval of the form (1.5 · 109, 1.6 · 109), we
are unlikely to say this interval has a 95% chance of containing µ.


