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8.8 Bootstrapping

The Empirical Distribution Function

In many of the preceding examples, we investigated the sampling distribution of estimators, assuming known population
distribution. But in many real-world scenarios, we won’t know the exact shape of the population (and we may not even have
insight into its approximate form).

For some estimators, we can use the Central Limit Theorem (or stronger results on regularity) to assume the sampling
distribution is approximately Normal. But the sample size required for approximate Normalcy depends on the estimator and
the underlying population. We’ll now outline procedures to estimate the sampling distribution of an estimator, with minimal
assumptions on the population.

Def: Let x = (x1, . . . , xn) be the observed values of a random sample X, and for each x ∈ R, define a function Fn(t) to be
the proportion of observed values less than or equal to x. That is,

Fn(t) =
1

n

n∑
i=1

Ixi≤t

The function Fn is called the sample (or empirical) distribution function. It can be viewed as the CDF of a discrete
distribution that assigns probability 1

n to each of the values x1, . . . , xn.

Ex 1: Suppose X1, . . . , X5 are drawn from an Expo(1) distribution, with

x = (0.52, 0.32, 0.24, 0.15, 0.10)

Then the ECDF is

Note that each set of observed values gives rise to a different ECDF. In this way, we can think of the ECDF as a random
function.

Additionally, observe that as n → ∞, the ECDF converges toward the CDF.
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Thm: Let Fn be the ECDF for a sample X, where Xi has CDF F . Then Fn(t) → F (t) in probability.

Proof. Let t ∈ R. For each i, let IXi≤t be the indicator variable that Xi ≤ t. Then

Fn(t) =
1

n

n∑
i=1

IXi≤t

which converges in probability to E[IXi≤t] = P (Xi ≤ t) = F (t), by the Law of Large Numbers.

Ex 2: Let x = (x1, . . . , xn) be the observed values of a sample X = (X1, . . . , Xn), and let Fn(t) be the corresponding ECDF.
Let X∗ be an iid sample with CDF Fn. How does X∗ compare to X?

Bootstrapping Using the ECDF

Using the preceding theorem, we know that the ECDF F̂ = Fn is a consistent estimator for F . It also turns out that for
each t, Fn(t) is the MLE of F (t). In other words, for relatively large sample sizes, the proportion of observations less than a
given value is approximately the probability that a random observation is less than the given value. As such, we can estimate
many things about F using Fn.

Suppose we have a random sample X from an unknown distribution F , and want to investigate a quantity that involves both
parameters of F and X. For example, suppose we want to estimate the variance of a statistic g(X) as an estimator for the
maximum value of F .

The main idea behind the bootstrap is to estimate an unknown distribution F using a known distribution F̂ (which may
be based on a sample X from F ), then compute the quantity of interest using F̂ and a sample X∗ from F̂ .

Ex 3: Suppose X = (X1, . . . , Xn) are a random sample from a population with unknown mean µ and variance σ2. Assume
that we know nothing more about the population distribution F other than that it has finite mean and variance.

Suppose we are interested in estimating the variance of the sample mean X̄: θ = Var(X̄). In theory, the variance of the

sample mean is σ2

n . But we don’t actually know σ2, so we need to estimate it. Why can’t we just use the MLE estimator
for σ2? (The MLE can only be computed with a known distribution F )

Let F̂ be an estimate for F ; in particular, the function F̂ depends on the observed data x. This CDF has some mean µ̂ and
variance σ̂2, both of which depend on x. Let X∗ be a random sample from F̂ . Then X̄∗ has mean µ̂ and variance σ̂2/n.
Since the distribution F̂ is known, we should be able to calculate σ̂2/n, which can be used as an estimate for σ2/n. Will it
be a good estimator? (That depends on how we choose F̂ )

Suppose we have observed data x = x1, . . . , xn, and let

x̄ =
1

n

∑
xi s2 =

1

n

∑
(xi − x̄)2



STA 336 Sampling Spring 2023

1. If we take F̂ = Fn, then X∗
i ∼ DUnif(x1, . . . , xn) and

σ̂2(x) = Var(X∗
i |x) = E[(X∗

i − E[X∗
i ])

2|x] = 1

n

∑
(xi − x̄)2 = s2

Then the variance of X̄∗, given x is s2

n , and so our estimate for θ = σ2

n is θ̂ = s2

n .

2. If we take F̂ be Normal and choose parameters equal to the MLE estimates from X̄, then F̂ ∼ N(x̄, s2), and the

variance of X̄∗ given x is also s2

n . Once again, our estimator for θ = σ2

n is θ̂ = s2

n .

In the preceding example, it was relatively easy to calculate the quantity of interest. But in many cases, finding the desired
quantity may be computationally intractable.

For example, if we want to calculate the 2.5% and 97.5% percentiles for the bootstrap distribution, we’ll need an explicit
formula for the joint PDF of (X∗

1 , X
∗
2 , . . . , X

∗
n) which requires n parameters (the values x1, . . . , xn). And then an explicit

formula for CDF for X̄∗ which is discrete and requires approximately nn parameters.

Thus, we approximate the bootstrap distribution using simulation.

The idea: We resample from the bootstrap distribution to represent new samples from the population.

Given a sample X of size n from F and a bootstrap estimator F̂ . Let B be a large number. To obtain a bootstrap
approximation:

1. Draw bootstrap samples X∗(1), . . . ,X∗(B) from F̂ .

2. Calculate the statistic of interest θ̂(i) for each bootstrap sample X∗(i)

3. Estimate features of the bootstrap distribution using the distribution of {θ̂(1), . . . , θ̂(B)}.

The intuition for why this works:
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What does the bootstrap distribution give us? It allows us to approximate the shape, spread, bias and symmetry of the
actual sampling distribution. That is, it makes use of the 3rd and higher moments of the sample to make estimates. However,
the bootstrap distribution does not provide accurate estimate of the center of the sampling distribution.

How accurate is the bootstrap?

1. How accurate is the theoretical bootstrap?

2. How accurate is the simulation-based approximation to the theoretical bootstrap?

Bootstrap distributions have two sources of random variation:

1. The original sample is chosen at random from the population

2. Bootstrap resamples are chosen at random from the original sample

Generally, we have control over the latter source of randomness. The number of bootstrap samples is only limited by
computational resources. Brad Efron, the original inventor of the bootstrap technique, suggested that B = 200 (or even as
few as B = 25) suffices for estimating standard error, and that B = 1000 is enough for confidence intervals.

But with widespread access to high speed computing, more resamples are often appropriate. For quick calculations, at least
B = 1000 should be used. For routine, but robust analysis, at least B = 10000 should be used, and for calculations where
accuracy is essential, use between B = 15000 and B = 50000.

Demo in RStudio.


