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7.4 Bayes Estimators

The prior and posterior distributions tell us how a Bayesian statisticians interprets parameters in light of data. But one of
the fundamental goals of statistics is estimating the values of parameters.

Before we get to the problem of estimating parameters using data, it is worth discussing how one might estimate the value
of a random variable in general.

Suppose Y is random with distribution f(y); in particular, suppose we already know the formula for f , and based on this,
want to make a prediction a for Y that is optimal in some sense. To determine what is optimal, we need to consider two
factors:

1. The loss incurred if we guess a and the true value is y. We denote this loss as L(y, a).

2. A decision rule determining what aspect of loss we wish to minimize.

There are several common choices of loss functions used throughout statistics, economics, and information theory. Each has
its own relative advantages and disadvantages, which we won’t dwell on too much here:

• Squared Loss: L(y, a) = (y − a)2

• Absolute Loss: L(y, a) = |y − a|

• 0-1 loss: L(y, a) = 1− Iy=a For discrete variables

• 0-1 loss with ϵ tolerance: L(y, a) = 1− I|y−a|<ϵ For continuous variables

• Entropy loss: L(y, a) = a
y − log

(
a
y

)
− 1

After determining the loss function L(y, a), we still also need to determine a decision rule. Since Y is random variable, then
L(Y, a) is also a random variable, and so we need to decide what statistic for this random variable to minimize/maximize.

Some common examples:

• Minimize expected loss

• Minimize maximal loss (minimax decision rule)

• Invariance under change of coordinates

Once we have both a loss function and a decision rule, we can calculate the optimal estimate for Y .

Thm: Using squared loss L(y, a) = (y−a)2 and minimizing expected loss, the optimal estimator of Y is the mean a = E[Y ].

Proof. Using estimate a, expected loss is

E[L(Y, a)] = E[(Y − a)2] = E[Y 2]− 2aE[Y ] + a2.

Differentiating w.r.r. a:
∂

∂
E[L(Y, a)] = −2E[Y ] + 2a

which is 0 when a = E[Y ]. Since the second derivative is positive, then a = E[Y ] corresponds to a local minimum.

Thm: Using absolute loss L(y, a) = |Y − a| and minimizing expected loss, the optimal estimator of Y is the median
a = Med(Y ).
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Proof. Note that E[L(Y, a)] = E|Y −a|; since the absolute value function isn’t differentiable, we cannot solve this optimization
problem by differentiating. Instead, we proceed by a different technique. Suppose that Y is a continuous variable, so that
f(y) is a density with

∫
f(y) dy = 1. Let m = E[Y ] and suppose that a < m. We’ll show that E[L(Y, a)]− E[L(Y,m)] ≥ 0.

E[L(Y, a)]− E[L(Y,m)] =

∫ ∞

−∞
|y − a| − |y −m| dy

=

∫ a

−∞
(a−m)f(y) dy +

∫ m

a

[(y − a)− (m− y)]f(y) dy +

∫ ∞

m

(m− a)f(y) dy

=

∫ a

−∞
(a−m)f(y) dy +

∫ m

a

[2y − (a+m)]f(y) dy +

∫ ∞

m

(m− a)f(y) dy

=(a−m)P (Y ≤ a) + (m− a)P (Y ≥ m) +

∫ m

a

[2y − (a+m)]f(y) dy

≥(a−m)P (Y ≤ a) + (m− a)P (Y ≥ m) +

∫ m

a

[2a− (a+m)]f(y) dy

=(a−m)P (Y ≤ a) + (m− a)P (Y ≥ m) + (a−m)P (a < Y < m)

=(m− a)[P (Y ≥ m− P (Y < m)] ≥ 0

Now, let’s relate this discussion to the Bayesian framework for parameters.

Suppose θ is a parameter of a model, treated as a random variable with prior distribution ξ. Before observing data, we can
estimate the value of θ using the loss-decision framework.

The estimate of θ that minimized expected loss with squared loss function is the mean of the prior distribution of θ.

Of course, rarely will we be estimating θ just based on the prior distribution. Instead, we would like to estimate θ in light of
data, which means our formula for our estimate of θ should be a function of the data.

Def: Let X be observations whose joint distribution is indexed by θ ∈ R. An estimator of θ is a real-valued function
δ(X). If X = x, then δ(x) is called the estimate of θ.

After observing data, we update the prior distribution ξ(θ) to produce the posterior distribution ξ(θ|x). But by definition,
this is the distribution of the random variable θ|x. We have tools for finding the best estimates of random variables: loss
functions and decisions rules.

That is, the expected loss that arises when estimation θ|x using a is

E[L(θ, a)|x] =
∫
Ω

L(θ, a)ξ(θ|x) dθ

Since we should change our estimate a based on data, we can treat a as a function of x. Define δ∗(x) = a to be the value of
a which minimizes the expected loss given the data x.

Def: Let L(θ, a) be a loss function. The Bayes Estimator is the function δ∗(x) given by

δ∗(x) = argminaE[L(θ, a)|x]

Thm: Suppose we use a squared loss function L(θ, a) = (θ − a)2. Then the Bayes estimator is δ∗(X) = E[θ|X].

That is, using squared loss and minimizing expected loss, the best estimate for θ|x is the mean of the conditional distribution
ξ(θ|x).

Ex 1: When a DNA sequence is transcribed, errors are introduced at a rate of θ per 106 base pairs. Assume that θ is
unknown, but the prior on θ is Gamma with E[θ] = 2

5 and α = 2, β = 5. Suppose 2 defects are found in a sequence with
2 · 107 base pairs. What is the Bayes estimate of the average number of defects?
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Solution. By assumption, the prior distribution of θ is

ξ(θ) ∝ θα−1e−βθ ∝ θe−5θ

We assume that, given θ, the number of defects per 106 base pairs is approximately Pois(θ). For 1 ≤ i ≤ 20, let Xi be the
number of defects in the ith set of 106 base pairs. Note that x1 + · · ·+ x20 = 2. The likelihood function is

f(x|θ) =
20∏
i=1

f(xi|θ) =
20∏
i=1

e−θθxi

xi!
∝ e−20θθx1+...x20 = e−20θθ2

Thus, the posterior distribution is
ξ(θ|x) ∝ f(x|θ)ξ(θ) ∝ e−25θθ4−1

and so θ|x ∼ Gamma(4, 25).

The Bayes’ estimate is E[θ|X] = 4
25 . ■

Def: A sequence of estimators δ∗n of θ is consistent provided the sequence converges in probability to θ.

Thm: (Slutsky’s Theorem) Let (Xn, Yn) be a random vector. If Xn converges in distribution to the random variable X and
Yn converges in probability to the constant c, then

1. Xn + Yn converges in distribution to X + c

2. XnYn converges in distribution to cX

3. Xn/Yn converges in distribution to X/c (provided c ̸= 0)

The theorem remains true if all instances of convergence in distribution are replaced with convergence in probability.

Ex 2: The Bayes Estimator for θ is consistent.


