Instructions: Write-up complete solutions to the following problems and submit answers on Gradescope. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A rubric for homework problems appears on the final page of this assignment.

• Unless otherwise noted, problem numbers are taken from the 4th edition of DeGroot and Schervish's *Probability and Statistics*.

Monday 2/6

Section 7.4: (2, 3), 6, 12, 15 Note: Problems enclosed in parentheses will be graded as a single problem.

Wednesday 2/8

You are statisticians employed by the consulting firm *BayesBall*. A veteran major-league baseball scout seeks your advice regarding the probability an amateur baseball player Phil Hatt will get a base hit against a major-league pitcher. The scout has arranged for P. Hatt to have at least 10 at bats against a major-league pitcher.

The traditional batting average estimator $\hat{\theta}_f = \frac{X}{n}$ (i.e. proportion of hits in *n* at bats) is a frequentist estimator that uses observed data, but ignores prior information. Assuming each of the *n* at bats constitute an independent Bernoulli trial with probability θ of a base hit, then

$$X \sim \operatorname{Bin}(n, \theta)$$

Suppose we have the following additional prior information:

- P. Hatt appears to be a good but not great player. He is one of the better batters on a somewhat above average high-school team.
- The few major-league scouts who have watched him play do not believe his batting ability is at the professional level.
- A barely adequate major-league hitter has a batting average of 0.2.
- A very good major-league batter has a batting average of 0.3.
- Ty Cobb has the all-time best major-league batting average of 0.366.

Problem AP1

- a. Explain why it may be a good idea to use a Beta prior.
- b. Determine 'reasonable' values of the hyperparameters α and β in the prior distribution for θ based on the facts listed above and properties of the Beta distribution. Justify your choices by computing appropriate means, variances, probabilities, and graphs.
- c. Let $\mathbf{x} = (x_1, \dots, x_n)$ be a sample of n at bats, where $x_i = 1$ if the *i*th at bat resulted in a base hit, and $x_i = 0$ otherwise. Find a formula for posterior distribution of θ in terms of a generic sample \mathbf{x} and generic values of α and β . And then write down the formula for the values of α and β you specified in the previous part.
- d. In R, plot the prior distribution for θ , along with posterior distributions for several values of x, using the values of α and β you selected previously.

Problem AP2

a. Find the general formula for the Bayes Estimator $\hat{\theta}_b$ for θ in terms x (the number of base hits) and generic α and β . Then write down the Bayes estimator for the value of α and β you specified in Problem 1. b. Complete the following table to compare the frequentist estimator $\hat{\theta}_f$ and your Bayes estimator $\hat{\theta}_b$:

x	$\hat{ heta}_f$	
0	0.0	
1	0.1	
2	0.2	
3	0.3	
4	0.4	
5	0.5	
6	0.6	
$\overline{7}$	0.7	
8	0.8	
9	0.9	
10	1.0	

 $\hat{\theta}_b$

c. Show that $\hat{\theta}_b$ is a weighted average of $\hat{\theta}_f$ and the prior mean $\frac{\alpha}{\alpha+\beta}$.

- d. Suppose you actually had no prior knowledge about typical batting averages in baseball, or of P. Hatt's talents. What would be a reasonable prior to use in this case? Compute the Bayes estimator for this prior, and compare to the frequentist estimator.
- e. Show how to obtain the frequentist estimator using an improper prior.

Friday 2/10

Section 7.5: (2, 3), 5, 6, 11

Note: Problems enclosed in parentheses will be graded as a single problem.

Homework 3: 2/6 - 2/10 Due 11:59pm Monday, February 13 Name:

General Rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key justification for why the solution is valid. Alternatively, the solution is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant component of the problem or makes a sig- nificant mistake. Alternatively, in a multi-part prob- lem, a majority of the solutions are correct and well- written, but one part is missing or is significantly incorrect
2	The solution is either correct but not adequately written, or it is adequately written but overlooks a significant component of the problem or makes a sig- nificant mistake.
1	The solution is rudimentary, but contains some rel- evant ideas. Alternatively, the solution briefly in- dicates the correct answer, but provides no further justification
0	Either the solution is missing entirely, or the author makes no non-trivial progress toward a solution (i.e. just writes the statement of the problem and/or re- states given information)
Notes:	For problems with multiple parts, the score repre- sents a holistic review of the entire problem.
	Additionally, half-points may be used if the solution falls between two point values above.