
MAT/STA 336 Midterm 2 Review Spring 2023

The first midterm exam will be a take-home exam which will be made available in the Midterm 2 folder
under the documents section of PWeb at 9am on Wednesday, April 26th and due at 11:59pm (uploaded to
Gradescope) on Wednesda, May 3rd.

Content. The exam will be lightly cumulative, but with emphasis on the material covered since the first
midterm. In particular, it will focus on Chapter 8 (8.4, 8.5), Chapter 9 (9.1, 9.5, 9.6, 9.7) and Section 12.6
of DeGroot and Schervish’s Probability and Statistics. There will be some questions that ask you to use R.

Format. The exam is intended to take 3 hours to complete, although you may take up to 5 hours to
complete it. These 5 hours do not need to be consecutive. You should monitor your own time, and record
on the test your estimate for the total amount of time you actively worked on the exam.

Your solutions to the exam should be neatly neatly written or typed. If you scan a handwritten assignment,
be sure to review the legibility of your scan on Gradescope after you submit.

Resources. You may use any notes you’ve taken for this class, your work on any previous homework or
daily assignments, lecture notes I’ve posted on the course website, the recorded lecture video from Monday
2/20 and DeGroot and Schervish’s Probability and Statistics textbook, as well as Blitzstein’s Introduction
to Probability textbook.

For problems asking you to do analysis or perform computations using R, you may use either a local
installation of R or the Grinnell R Studio server, and you may reference any of the R help files (available
by typing ?functionname in the console).

You may not use any other resources other than those listed above. If you have questions about whether
a resource can be used, you are welcome to message me.

Preparation. The best preparation you can do for the exam is to organize your notes and/or homework
to make finding information and examples as quick and efficient as possible. Beyond that, you should
attempt to accurately assess what topics you have mastered and which you need to practice more. A good
starting point is to review the list of objectives on each daily assignment. Another way to prepare is to
create your own study guide with summaries of the important concepts, along with example problems
you’ve designed and solved. Exam problems will be comparable in difficulty to those exhibited in class
and assigned for homework. Some exam questions may be similar to problems you have seen before, while
others will require you to synthesize your knowledge in new ways.

On the exam, you may be asked to do the following:

• Rephrase a key definition and/or theorem in your own words.
• Determine whether a given statement is true or false.
• Interpret or explain a statistics concept in everyday language.
• Sketch the proof of an important result discussed in class.
• Perform calculations using relevant techniques from the course.
• Provide a short, rigorous proof of a novel statement or result.
• Create and analyze a statistical model for a particular phenomenon.
• Use R to simulate a random phenomenon.

For extra practice, several additional review problems are printed below. Solutions to these problems can
be found on the exams page of the course website. While these questions are representative of the typical
scope and difficulty of individual exam questions, this review is not comprehensive, nor does it necessarily
represent the total amount of time available for the exam.

https://grinnell-statistics.github.io/sta-336-s23/exams.html
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Practice Problems.

(1) Suppose X1, . . . , Xn are a sample from N(θ, σ2), where θ is unknown but σ2 is known.
(a) Construct the shortest-length 0.95 confidence interval for θ.
(b) Suppose that θ has a prior distribution N(µ, ν2). Find the shortest length 0.95 posterior

credible interval for θ.
(c) Show that as ν2 → ∞, the interval in part (b) converges to the interval in part (a).
(d) Explain what this suggests about the relationship between the frequentist confidence interval

and the bayesian credible interval, using the concept of improper priors.

Solution. (a) We’ll use the MLE X̄ as our estimator for θ. Since the sampling distribution for X̄
is N(µ, σ2/n), which is symmetric, then the shortest length confidence interval is the one that
assigns equal area to each tail. Let c be the 0.975 quantile of the standard Normal distribution.
By Exercise 8.5.1, a 0.95-level confidence interval is of the form(

X̄ − c
σ√
n
, X̄ + c

σ√
n

)
(b) By Theorem 7.3.3, the Normal distribution N(µ, ν2) is the conjugate prior for θ, when sam-

ples are taken from N(θ, σ2) with known σ2. Moreover, the posterior distribution of θ|X is
N(µ1, ν

2
1) with

µ1 =
σ2µ+ nν2x̄

σ2 + nν2
ν21 =

σ2ν2

σ2 + nν2

The 0.95 credible interval of smallest length is the one assigning equal area to the two tails.
Let c1 and c2 be the 0.05 and 0.975 quantiles of the N(µ1, ν

2
1) distribution, giving a 0.9 credible

interval of (c1, c2).
(c) By Theorem 7.3.1 and 7.3.2, µ1 → x̄ and ν21 → σ2/n, as ν2 → ∞ (this can also be verified

directly form the formula in the previous part). Therefore, the posterior distribution N(µ1, ν
2
1)

converges to N(x̄, σ
2

n ) as ν2 → ∞. In this case, c1 and c2 converge to c′1 and c′2, the 0.025

and 0.975 quantiles of N(x̄, σ
2

n ). Now, let F be the CDF of N(x̄, σ
2

n ) and let Φ be the CDF of
N(0, 1). Then by the location-sclae properties of the Normal distribution

F (x) = Φ

(
x− x̄

σ/
√
n

)
Hence, if c′1 and c′2 are the 0.025 and 0.975 quantile of Φ, then solving c′i =

xi−x̄
σ/

√
n
for xi are the

0.025 and 0.975 quantiles for F :

x′1 = x̄+ c1
σ√
n

x′2 = x̄+ c2
σ√
n

as desired.
(d) The previous problem shows that we can obtain the frequentist confidence interval as the

limit of the Bayesian posterior credible interval, using an improper prior. Therefore, we can
think about the frequentist interval as a credible interval, but with a prior reflecting maximal
amount of ignorance.

(2) Let X1, . . . , Xn be a sample from Unif(θ − 0.5, θ + 0.5) with θ unknown, and let X =
∑

Xi

(a) Explain why the random variable V = X − nθ is pivotal.
(b) Find a function r(v,x) for which r(V,X) = θ.
(c) Suppose Y1, . . . , Yn are iid Unif(−0.5, 0.5), let Y =

∑
Yi, and let F be the CDF for Y . Use

parts (a) and (b) to find a formula for a γ-level confidence interval for θ in terms of F . Note:
Y is not a named distribution that we’ve previously studied.

(d) Use R to approximate F−1(0.025) and F−1(0.975) by simulating 10,000 samples from Unif(−0.5, 0.5).
(e) Suppose X = 25 and n = 50. Find the endpoints of the observed 0.95-level confidence interval

for θ.
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Solution. (a) By expanding X − nθ as a sum, we see that

X − nθ =
∑

(Xi − θ)

and each (Xi − θ) is distributed as Unif(−0.5, 0.5). Hence, as X − nθ is a sum of variables,
none of whose distributions depend on θ, then the distribution of X−nθ also does not depend
on θ.

(b) Let x =
∑

xi and define r(v,x) = x−v
n . Then

r(V,X) =
X − V

n
=

X − (X − nθ)

n
= θ

(c) Let c1 = F−1
(
1−γ
2

)
and c2 = F−1

(
1+γ
2

)
. Then, as r is a decreasing function of v (and hence,

reverses inequalities),

γ = P (c1 < V < c2) = P (r(c1,X) > r(V,X) > r(c2,X)) = P

(
X − c2

n
< θ <

X − c1
n

)
showing that A = X−c2

n and B = X−c1
n are a γ-level confidence interval for θ.

(d) The following code runs 10,000 simulations and computes the 0.025 and 0.975 quantiles of the
distribution (when n = 50).
set.seed(1002)

trials <- 10000

y <- rep(0,trials)

for (i in 1:trials){

y[i] = sum(runif(50, -0.5, 0.5))

}

quantile(y, c(0.025, 0.975))

## -4.016697 4.002452

which we round to −4 and 4.
(e) With X = 25 and n = 50, the .95-level confidence interval is(

25− 4

50
,
25 + 4

50

)
= (0.42, 0.58)

(3) Two college students collected data on the price of hardcover textbooks from two disciplinary areas:
Mathematics and the Natural Sciences, and the Social Sciences. The data can be loaded into R by
running the following code (Don’t worry about interpreting what the code itself is doing).

bookprices <- read.csv("https://people.carleton.edu/~kstclair/data/BookPrices.csv")

books_ss <- subset(bookprices, Area == "Social Sciences")$Price

books_mns <- subset(bookprices, Area == "Math & Science")$Price

In particular, the vector books ss contains a list of prices for Social Science texts, and the vector
books mns contains a list of prices for Math and Science texts. Let x̄ss denote the sample mean
price of social science texts and let x̄mns denote the sample mean price of Math and Science texts.
(a) Compute x̄ss and x̄mns. Then compute the ratio x̄ss

x̄mns
.

(b) Use bootstrapping to simulate 104 sample means from the sample of Social Science textbooks,
and 104 sample means from the sample of Math and Natural Sciences textbooks. Visualize
the approximate bootstrap distributions using histograms.

(c) Use the bootstrap statistics in the previous part to create 104 bootstrap statistics for the
ratio of mean prices (social science / math and natural science). Create a histogram of the
approximate bootstrap distribution.

(d) Create a 95% bootstrap percentile interval for the ratio of the means. What does this interval
suggest about the true ratio?
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(e) Use your approximate bootstrap distribution to estimate the standard deviation and the bias

of
x̄ss
x̄mns

as an estimator for the true ratio of mean prices. Approximately what proportion of

the mean squared error of
x̄ss
x̄mns

is due to bias?

Solution. (a) The following code computes x̄ss and x̄mns, as well as
x̄ss
x̄mns

:
xbar_ss <- mean(books_ss)

xbar_mns <- mean(books_mns)

ratio <- xbar_ss/xbar_mns

## 98.99 156.73 0.6315

(b) The following code creates the 104 bootstrap statistics from each sample:
trials <- 10^4

boot_ss <- rep(0, trials)

boot_mns <- rep(0, trials)

for (i in 1:trials){

boot_ss[i] <- mean(sample(books_ss, size = length(books_ss), replace = T))

boot_mns[i] <- mean(sample(books_mns, size = length(books_mns), replace = T))

}

Histograms of the two bootstrap distributions are shown below:

(c) To create a bootstrap ratio statistics, we take the ratios of the bootstrap means for each
(independent) trial:
boot_ratio <- boot_ss / boot_mns

The histogram of the distribution is shown below:
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(d) The 95% bootstrap percentile interval is obtain from the 0.025 and 0.975 quantiles of the
bootstrap distribution:
quantile(boot_ratio, c(0.025, 0.975))

## 0.4179 0.8560

Since this interval gives a range of plausible values for the true ratio, we estimate that social
science texts cost between 42% and 86% less than mathematical and natural science texts.

(e) The bias estimate is the difference between the mean of the bootstrap statistic and the observed
statistic,
mean(boot_ratio) - ratio

# 0.0025

while the standard deviation estimate is the standard deviation of the bootstrap statistic:
sd(boot_ratio)

# 0.11

The estimated mean squared error is the sum of squares of the bias and standard deviation
estimates:
(mean(boot_ratio) - ratio)^2 + (sd(boot_ratio))^2

## 0.01

Of this 0.01 MSE, only bias2

MSE = 0.0005 is due to the bias.

(4) Suppose that a single observation X is obtained from Unif(0, θ) with θ unknown. Consider hy-
potheses

H0 : θ = 1 H1 : θ = 2

(a) Specify a test of the above hypotheses with size of 0, but also power of 0.
(b) Specify a test of the above hypotheses with size of 0, but with power strictly greater than 0.
(c) For the same hypotheses, consider a procedure which rejects when X ≥ 0.5. What is the size

and power of this test?
(d) For the same hypotheses, specify a size 0.05 test with power strictly greater than 0.5.

Solution. Throughout this problem, since both null and alternative hypotheses are simple, then
the size of a test δ is the value of the power function π(θ|δ) on θ = 1, while the power of the test
is the value of the power function π(θ|δ) on θ = 1.
(a) Let δ be the test that never rejects H0. Hence π(θ = 1|δ) = P (rejectH0|θ = 1) = 0 and

similarly, π(θ = 2|δ) = P (rejectH0|θ = 2) = 0. This shows that the test has both size and
power of 0.

(b) Now, consider the test δ which rejects when X > 1. Then

π(θ = 1|δ) = P (rejectH0|θ = 1) = P (X > 0.5|θ = 1) =
1

2
while

π(θ = 2|δ) = P (rejectH0|θ = 2) = P (X > 0.5|θ = 2) =
1

4
showing that this test has size 1/2 and power 1/4.

(c) In this case,

π(θ = 1|δ) = P (rejectH0|θ = 1) = P (X > 1|θ = 1) = 0

while

π(θ = 2|δ) = P (rejectH0|θ = 2) = P (X > 1|θ = 2) =
1

2
(d) Let δ be the test which rejects H0 when X ≥ 0.95. Then,

π(θ = 1|δ) = P (rejectH0|θ = 1) = P (X > 0.95|θ = 1) = 0.05

while

π(θ = 2|δ) = P (rejectH0|θ = 2) = P (X > 0.95|θ = 2) =
1.05

2
= 0.525
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showing that this test has size 0.05 and power 0.525.

(5) Let X be a random sample from a distribution with unknown parameter θ, and suppose that for
each value θ0 of θ, and each number 0 ≤ α0 ≤ 1, there exists a level α0 test procedure δθ0 of the
hypotheses

H0 : θ ≥ θ0 H1 : θ < θ0
For each possible value x of the X, define a set ω(x) by

ω(x) = {θ0 : δθ0 rejects H0 when x is observed}
(a) Prove that ω(X) is a 1− α0 confidence set for θ.
(b) Suppose that X1, . . . , Xn ∼ N(θ, 1), and consider procedures {δθ0} which reject H0 when

X̄ ≤ cθ0 , where cθ0 is chosen so that δθ0 is a size α0 test. Give an explicit description of ω(x)
as an interval; i.e. explain why ω(x) is an interval, rather than some other type of set, and
specify the random variable(s) that determine the endpoints of the interval.

Solution. (a) For fixed value of θ, δθ is a α0-level test, by construction. Then

P (θ ∈ ω(X)) =P (δθ does not reject H0 when X is observed)

=1− P (δθ does reject H0 when X is observed)

≥ 1− α0

Hence, ω(X) is indeed a 1− α0 confidence set.
(b) We first calculate the power function

π(θ|δθ0) = P (X̄ ≤ cθ0 |θ) = P

(
X̄ − θ

1/
√
n

≤ cθ0 − θ

1/
√
n
|θ
)

= Φ

(
cθ0 − θ

1/
√
n

)
which is a decreasing function of θ on H0. Hence, the size δθ0 is obtained for θ = θ0. If δθ0 is
to be an α0-sized test, then

cθ0 = n−1/2Φ−1 (α0) + θ0

Observe now that if θ0 < θ′0, then cθ0 < cθ′0 . If δθ′0 does not reject when X = x is observed,
then x > cθ′0 . Thus, x > cθ0 and so δθ0 also does not reject when X = x is observed. It follows

that if θ′0 ∈ ω(X), then θ0 ∈ ω(X), which shows that ω(X) is an interval.
On the other hand, if

X̄ = cθ0 = n−1/2Φ−1 (α0) + θ0

then δθ0 rejects H0. As does every test with θ′0 < θ0. Hence, X̄ − n−1/2Φ−1 (α0) is the upper
endpoint of the interval.
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