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Outline

In this lecture, we will. . .
• Review framework for linear regression
• Discuss inference procedures for linear models
• Review conditions for regression on linear models
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Section 1

Simple Linear Regression
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Review of Simple Linear Regression

• Previously, we used linear regression to analyze the relationship between two
quantitative variables

• The strength and direction of the linear relationship is summarized by the correlation
coefficient R

• The linear model Ŷ = β0 + β1X can be used to make predictions about Y using the
values of X .
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• The linear model Ŷ = β0 + β1X can be used to make predictions about Y using the
values of X .

R= −0.2

Y= −7.36 −0.89 X

−20

−10

0

5.0 7.5 10.0

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 4 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Linear Models in R

• To fit a linear model in R, use the lm function
my_mod <- lm(Y ~ X, data = my_data)

• To view coefficients of the model, use get_regression_table from moderndive
get_regression_table(my_mod)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept -7.36 5.16 -1.43 0.165 -17.9 3.21
## 2 X -0.89 0.835 -1.07 0.296 -2.60 0.824

• Correlation can be computed using summarize and cor:
my_data %>% summarize(R = cor(X,Y))

## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.201

• We can fit a linear model to any data set we want.
• But if we just have a sample of data, any trend we detect doesn’t necessarily

demonstrate that the trend exists in the population.
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Statistical Inference for Regression

Goal: Use statistics calculated from data to make inferences about the nature of
parameters

• For regression, we can propose a model for the relationship between explanatory
variable X and response variable Y :

Y = β0 + β1X + ϵ ϵ ∼ N(0, σ2)

• Parameters of interest:
• β0 (intercept)
• β1 (slope)
• ρ (correlation)
• σ (standard deviation of residuals)

• But in general, we won’t ever be able to know the true values of these parameters. So
we estimate them based on sample data.

Ŷ = β̂0 + β̂1X

• Statistics from sample:
• β̂0 (intercept)
• β̂1 (slope)
• R (correlation)
• σ̂ (standard error of residuals)
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Midterm Elections

• Elections for the U.S. House of Representatives occur every two years, while elections
for the U.S. president occurs every 4 years.

• House elections in the middle of a Presidential term are called midterm elections.

• One political theory suggests that high unemployment rate corresponds to worse
performance by the President’s party in midterm elections.
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Unemployment Model

• Our data consists of results for (almost) all midterm elections between 1900 and 2020

• Results during the Great Depression (1934 and 1938) were removed because the
unemployment rate was 21% and 18%, respectively.

• Our data is not a sample from historical midterm elections
• But we can treat the many effects complicated effects that influence midterm

performance as random variables
• We can create a model for midterm performance, and treat our data as a random sample

from the collection of all theoretical midterm election results according to this model

• Not every random sample from this model will be have the same regression statistics
(slope, intercept, correlation, standard deviation of residuals)

• We’re interested in assessing how much these statistics may change, just due to the
randomness in this model
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Section 2

Hypothesis Tests
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Hypothesis Tests for Regression

Hypotheses
• Null Hypothesis: There is no linear relationship between Unemployment X and

Percent Change in Midterm Seats Y
• Alternative Hypothesis: There is a negative linear relationship between

Unemployment X and Midterm Results Y

H0 : β1 = 0 Ha : β1 < 0

Method
• If there is no linear relationship, then the pairing between X and Y is superficial and

we can shuffle the values of Y among the values of X to simulate a similar data set:
• For each midterm election, record unemployment rate, but randomly choose percent

change in house seats from among all recorded percent changes (without replacement)
• Compute the slope of the regression model for this simulated data set
• Repeat several times to assess variability in slope assuming H0 is true

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 10 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Hypothesis Tests for Regression

Hypotheses
• Null Hypothesis: There is no linear relationship between Unemployment X and

Percent Change in Midterm Seats Y
• Alternative Hypothesis: There is a negative linear relationship between

Unemployment X and Midterm Results Y

H0 : β1 = 0 Ha : β1 < 0

Method
• If there is no linear relationship, then the pairing between X and Y is superficial and

we can shuffle the values of Y among the values of X to simulate a similar data set:

• For each midterm election, record unemployment rate, but randomly choose percent
change in house seats from among all recorded percent changes (without replacement)

• Compute the slope of the regression model for this simulated data set
• Repeat several times to assess variability in slope assuming H0 is true

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 10 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Hypothesis Tests for Regression

Hypotheses
• Null Hypothesis: There is no linear relationship between Unemployment X and

Percent Change in Midterm Seats Y
• Alternative Hypothesis: There is a negative linear relationship between

Unemployment X and Midterm Results Y

H0 : β1 = 0 Ha : β1 < 0

Method
• If there is no linear relationship, then the pairing between X and Y is superficial and

we can shuffle the values of Y among the values of X to simulate a similar data set:
• For each midterm election, record unemployment rate, but randomly choose percent

change in house seats from among all recorded percent changes (without replacement)

• Compute the slope of the regression model for this simulated data set
• Repeat several times to assess variability in slope assuming H0 is true

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 10 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Hypothesis Tests for Regression

Hypotheses
• Null Hypothesis: There is no linear relationship between Unemployment X and

Percent Change in Midterm Seats Y
• Alternative Hypothesis: There is a negative linear relationship between

Unemployment X and Midterm Results Y

H0 : β1 = 0 Ha : β1 < 0

Method
• If there is no linear relationship, then the pairing between X and Y is superficial and

we can shuffle the values of Y among the values of X to simulate a similar data set:
• For each midterm election, record unemployment rate, but randomly choose percent

change in house seats from among all recorded percent changes (without replacement)
• Compute the slope of the regression model for this simulated data set

• Repeat several times to assess variability in slope assuming H0 is true

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 10 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Hypothesis Tests for Regression

Hypotheses
• Null Hypothesis: There is no linear relationship between Unemployment X and

Percent Change in Midterm Seats Y
• Alternative Hypothesis: There is a negative linear relationship between

Unemployment X and Midterm Results Y

H0 : β1 = 0 Ha : β1 < 0

Method
• If there is no linear relationship, then the pairing between X and Y is superficial and

we can shuffle the values of Y among the values of X to simulate a similar data set:
• For each midterm election, record unemployment rate, but randomly choose percent

change in house seats from among all recorded percent changes (without replacement)
• Compute the slope of the regression model for this simulated data set
• Repeat several times to assess variability in slope assuming H0 is true

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 10 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

A Few Shuffles

midterms_house %>%
specify(house_change ~ unemp) %>%
hypothesize(null = "independence") %>%
generate(1, type = "permute")

## # A tibble: 6 x 2
## house_change unemp
## <dbl> <dbl>
## 1 -10.6 11.6
## 2 -19.3 4.3
## 3 -1.07 3.29
## 4 -25.5 5.86
## 5 -13.5 6.63
## 6 -10.3 3.38

## # A tibble: 6 x 2
## house_change unemp
## <dbl> <dbl>
## 1 -4.28 11.6
## 2 -12.9 4.3
## 3 -16.3 3.29
## 4 -20.9 5.86
## 5 -24.2 6.63
## 6 -21.0 3.38

## # A tibble: 6 x 2
## house_change unemp
## <dbl> <dbl>
## 1 -16.3 11.6
## 2 -9.22 4.3
## 3 -10.6 3.29
## 4 -4.57 5.86
## 5 -12.9 6.63
## 6 -2.75 3.38
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Scatterplots of Synthetic Data I
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Note: location of individual points change, but general clusters do not.
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Scatterplots of Synthetic Data II
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Scatterplots of Synthetic Data III
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Note: location of individual points change, but general clusters do not.
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

midterms_house %>%
specify(house_change ~ unemp) %>%
hypothesize(null = "independence") %>%
generate(1000, type = "permute")
calculate( stat = "slope")

## Response: house_change (numeric)
## Explanatory: unemp (numeric)
## Null Hypothesis: independence
## # A tibble: 6 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.105
## 2 2 -1.23
## 3 3 0.0265
## 4 4 -0.931
## 5 5 0.600
## 6 6 -0.0527
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Visualizing 1000 Slopes
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• Most lines are approximately horizontal. But some have positive or negative slope.
• The linear regression line for the original data is shown in blue.
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The Sampling Distribution of b1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.89, direction = "left")
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null_slope %>% get_p_value(obs_stat = -0.89, direction = "left")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.179
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Conclusion

With a P-value of 0.179, which is greater than α = 0.05, we fail to reject H0

• A slope like this is consistent with those arising due to chance if there were no
relationship between Unemployment and Change in House Seats.

• The data does not provide evidence of a linear relationship between Unemployment and
Change in House Seats

• Does this mean there is no relationship between Unemployment and Change in House
Seats?

• No! Failing to reject H0 is not the same as showing that H0 is true.
• Perhaps there is a small effect, but our sample size was insufficient to detect it
• Perhaps there is an effect, but it is non-linear
• Perhaps there is an effect, but it is masked by other confounding variabes.
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Section 3

Confidence Intervals
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Confidence Intervals for Linear Models

• A hypothesis test allows us to assess the strength of evidence of a claim, while a
confidence interval allows us to assess the magnitude of an effect.

• Suppose Percent Change in Seats could be perfectly predicted by Unemployment Rate
(with no deviations or errors). What slope would we expect to find in the linear
regression model?

• It’s impossible to say without knowing the variability in the unemployment and percent
change data.

• Reminder: slope tells us the average increase in the response variable per unit increase
in the explanatory variable

• If we want to estimate the strength of the linear relationship between the two
variables, we should instead create a confidence interval for the correlation R.
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Bootstrapping for confidence intervals

• To approximate variability in the correlation statistic R, we create a bootstrap sample
by resampling the paired data and then calculation correlation

• This corresponds to sampling with replacement from the columns of the original sample

midterms_house %>%
specify(house_change ~ unemp) %>%
generate(1, type = "bootstrap")

## # A tibble: 6 x 2
## house_change unemp
## <dbl> <dbl>
## 1 -13.5 9.7
## 2 -6.47 5.8
## 3 -10.6 5.3
## 4 -25.5 6.93
## 5 -26.6 5.86
## 6 -19.3 8.94
## # A tibble: 1 x 1
## cor
## <dbl>
## 1 -0.175
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Bootstrap Sample

• Dashed red line indicates regression line for
original sample

• Darker points correspond to observations
included in bootstrap more than once
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Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

midterms_house %>%
specify(house_change ~ unemp) %>%
generate(1000, type = "bootstrap") %>%
calculate(stat = "correlation")

## Response: house_change (numeric)
## Explanatory: unemp (numeric)
## # A tibble: 6 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.305
## 2 2 -0.0639
## 3 3 -0.0805
## 4 4 -0.0308
## 5 5 -0.193
## 6 6 -0.322
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

The Bootstrap Distribution for R
A 95% confidence interval for correlation ρ is
boot_slope %>% get_ci(level = .95, type = "percentile")

## lower_ci upper_ci
## 1 -0.49 0.073
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Simulation−Based Bootstrap Distribution

• The original sample had correlation R = -0.2
• It is possible that Unemployment and Percent Change has between moderately negative

correlation (-0.49) and very weak positive correlation (0.07).
• It’s also plausible that the two variables have 0 correlation.
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Section 4

Conditions for Inference
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

1 The relationship between explanatory and response variables must be approximately
linear. (Linear)

• Check using scatterplot/residual plot

2 The observations should be independent of one another. (Independence)
• Check using scatterplot/residual plot, as well as sample design

3 The distribution of residuals should be Normally distributed. (Normal)
• Check using histogram of residuals

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

• Check using residual plot.
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Checking Conditions: Linear
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Midterm Elections

• Data is not tightly clustered around line of best fit

• But this doesn’t mean data is not linear. Just that residuals have high variance
• Scatterplot does not show signs of NON-linear relationship
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Checking Conditions: Independence

• The assumption that observations are independent is the most important for inference,
but also most difficult to check.

• Data representing repeated observations over time is particular susceptible to dependence
• Consecutive observations in a time interval may have unwanted correlation
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Residuals over Time

• Here, variables over time do not show strong consistent patterns
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Checking Conditions: Normal

my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)

ggplot(mod_residuals, aes( x = residual))+geom_histogram(bins = 12, color = "white")
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• This provides some evidence
residuals are not Normally
distributed.

• This doesn’t mean we discard
analysis entirely, but we should be
more cautious about inferential
conclusions
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Checking Conditions: Equal Variability

my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)

ggplot(mod_residuals, aes(x = unemp, y = residual))+geom_point()
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Residuals appear to have constant variability for unemployment between 2 and 7.5

• However, data with unemployment greater than 8 is relatively sparse, making it more
difficult to assess variability
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Section 5

Theory-Based Methods
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Inference for Slope

• Can we make inference about the slope β1 of a linear model without using simulation?

• We need to know the mean, standard error, and shape of the sampling distribution for β̂1

• If LINE conditions are satisfied, then β̂1 is Normally distributed with mean β1.
• And the standard error is given by:

SE(β̂1) =

√
1

n − 2

∑n
i=1

(yi − (β0 + β1xi ))2∑n
i=1

(xi − x̄)2
(DON’T MEMORIZE!)

• In practice, we estimate β0, β1 in the formula using β̂0, β̂1.
• We perfom a hypothesis test of H0 : β1 = 0 using the test statistic

t =
sample stat − null value

SE
=

β̂1 − 0
SE

• And we create a confidence interval for β1 using
sample stat ± t∗ · SE = β̂1 ± t∗ · SE

• In both cases, the reference distribution is the t-distribution with n − 2 degrees of
freedom.
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Calculating test statistics and confidence intervals

• Can we get test statisics and confidence intervals for β1 without tedious calculation?

• Yes! Using the lm function in R.
my_mod <- lm(house_change ~ unemp, data = midterms_house)
get_regression_table(my_mod)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept -7.36 5.16 -1.43 0.165 -17.9 3.21
## 2 unemp -0.89 0.835 -1.07 0.296 -2.60 0.824

• The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.

• The upper and lower bounds for the 95% confidence interval are lower_ci and
upper_ci

• The table also gives similar information for the intercept and hypothesis test
H0 : β0 = 0 (but this is less useful in practice)
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Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Inference for Correlation

• Suppose we are interested in investigating the correlation ρ between two variables

• The standard error for the sample correlation R when ρ = 0 is

SE(R) =

√
1 − R2

n − 2

• To test the hypothesis H0 : ρ = 0 against Ha : ρ ̸= 0, use the test statistic

t =
sample stat − null value

SE
=

R − 0√
1−R2
n−2

where t follows the t-distribution with n − 2 degrees of freedom.
• There is a formula for confidence intervals, but it is considerably more complicated.

• This is because the sampling distribution for R is highly skewed unless R is close to 0
• Therefore, we can’t use the Normal approximation for R unless either the sample size is

very large, or R is close to 0.
• This is one situation where the simulation-based method clearly outperforms the

theory-based method
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• This is because the sampling distribution for R is highly skewed unless R is close to 0

• Therefore, we can’t use the Normal approximation for R unless either the sample size is
very large, or R is close to 0.

• This is one situation where the simulation-based method clearly outperforms the
theory-based method

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 33 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Inference for Correlation

• Suppose we are interested in investigating the correlation ρ between two variables
• The standard error for the sample correlation R when ρ = 0 is

SE(R) =

√
1 − R2

n − 2

• To test the hypothesis H0 : ρ = 0 against Ha : ρ ̸= 0, use the test statistic

t =
sample stat − null value

SE
=

R − 0√
1−R2
n−2

where t follows the t-distribution with n − 2 degrees of freedom.
• There is a formula for confidence intervals, but it is considerably more complicated.

• This is because the sampling distribution for R is highly skewed unless R is close to 0
• Therefore, we can’t use the Normal approximation for R unless either the sample size is

very large, or R is close to 0.

• This is one situation where the simulation-based method clearly outperforms the
theory-based method

Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 33 / 33



Simple Linear Regression Hypothesis Tests Confidence Intervals Conditions for Inference Theory-Based Methods

Inference for Correlation

• Suppose we are interested in investigating the correlation ρ between two variables
• The standard error for the sample correlation R when ρ = 0 is

SE(R) =

√
1 − R2

n − 2

• To test the hypothesis H0 : ρ = 0 against Ha : ρ ̸= 0, use the test statistic

t =
sample stat − null value

SE
=

R − 0√
1−R2
n−2

where t follows the t-distribution with n − 2 degrees of freedom.
• There is a formula for confidence intervals, but it is considerably more complicated.

• This is because the sampling distribution for R is highly skewed unless R is close to 0
• Therefore, we can’t use the Normal approximation for R unless either the sample size is

very large, or R is close to 0.
• This is one situation where the simulation-based method clearly outperforms the

theory-based method
Prof. Wells Inference for Simple Linear Regression STA 209, 5/8/23 33 / 33


	Simple Linear Regression
	Hypothesis Tests
	Confidence Intervals
	Conditions for Inference
	Theory-Based Methods

