Inference for Simple Linear Regression

Prof. Wells

STA 209, 5/8/23

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals	Conditions for Inference	Theory-Based Methods 0000

Outline

In this lecture, we will...

- Review framework for linear regression
- Discuss inference procedures for linear models
- Review conditions for regression on linear models

Section 1

Simple Linear Regression

Simple Linear Regression ○●○○○○	Hypothesis Tests 0000000000	Confidence Intervals	Conditions for Inference	Theory-Based Methods 0000

• Previously, we used linear regression to analyze the relationship between two quantitative variables

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0●0000	0000000000	00000		0000

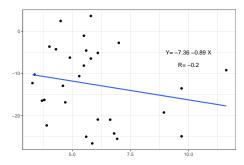
- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0●0000	0000000000	00000		0000

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0●0000	0000000000	00000		0000

- Previously, we used linear regression to analyze the relationship between two quantitative variables
 - The strength and direction of the linear relationship is summarized by the correlation coefficient ${\cal R}$
 - The linear model $\hat{Y} = \beta_0 + \beta_1 X$ can be used to make predictions about Y using the values of X.



Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Confidence Intervals	Conditions for Inference	Theory-Based Methods 0000

Linear Models in R

• To fit a linear model in R, use the 1m function

my_mod <- lm(Y ~ X, data = my_data)</pre>

Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Linear Models ir	n R			
• To fit a linear model in R, use the lm function my_mod <- lm(Y ~ X, data = my_data)				

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> = 17.9 3.21
2 X -0.89 0.835 -1.07 0.296 -2.60 0.824

Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000	
Linear Models i	n R				
 To fit a linear model in R, use the lm function my_mod <- lm(Y ~ X, data = my_data) 					
 To view coeff 	cients of the mo	odel. use get regi	ression table from	moderndive	

• To view coefficients of the model, use get_regression_table from moderndive get_regression_table(my_mod)

 Correlation can be computed using summarize and cor: my_data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.201
```

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000	
Linear Models i	n R				
 To fit a linear model in R, use the lm function my_mod <- lm(Y ~ X, data = my_data) 					
• To view coeff	cients of the mo	del, use get_regi	ression_table from	moderndive	

• To view coefficients of the model, use get_regression_table from get_regression_table(my_mod)

A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> ## 1 intercept -7.36 5.16 -1.43 0.165 -17.9 3.21
2 X -0.89 0.835 -1.07 0.296 -2.60 0.824

 Correlation can be computed using summarize and cor: my_data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
## R
## <dbl>
## 1 -0.201
```

• We can fit a linear model to any data set we want.

Simple Linear Regression 00●000	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000	
Linear Models i	n R				
 To fit a linear model in R, use the lm function my_mod <- lm(Y ~ X, data = my_data) 					
 To view coeff 	cients of the mo	odel. use get regi	ression table from	moderndive	

get_regression_table(my_mod)

A tibble: 2 x 7 ## term estimate std error statistic p value lower ci upper ci <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## ## 1 intercept -7.36 5.16 -1.43 0.165 -17.9 3.21 ## 2 X -0.89 0.835 -1.07 0.296 -2.60 0.824

 Correlation can be computed using summarize and cor: my data %>% summarize(R = cor(X,Y))

```
## # A tibble: 1 x 1
          R
##
      <dbl>
##
## 1 -0.201
```

- We can fit a linear model to any data set we want.
 - But if we just have a sample of data, any trend we detect doesn't necessarily demonstrate that the trend exists in the population.

Prof Wells

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
000●00	0000000000	00000		0000

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

• For regression, we can propose a model for the relationship between explanatory variable X and response variable Y:

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

• Parameters of interest:

- β₀ (intercept)
- β_1 (slope)
- ρ (correlation)
- σ (standard deviation of residuals)

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β_1 (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Goal: Use *statistics* calculated from data to make inferences about the nature of *parameters*

$$Y = \beta_0 + \beta_1 X + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

- Parameters of interest:
 - β₀ (intercept)
 - β₁ (slope)
 - ρ (correlation)
 - σ (standard deviation of residuals)
- But in general, we won't ever be able to know the true values of these parameters. So we estimate them based on sample data.

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

- Statistics from sample:
 - $\hat{\beta}_0$ (intercept)
 - $\hat{\beta}_1$ (slope)
 - R (correlation)
 - $\hat{\sigma}$ (standard error of residuals)

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0000●0	0000000000	00000	000000	0000
Midterm Election	ons			

- Elections for the U.S. House of Representatives occur every two years, while elections for the U.S. president occurs every 4 years.
 - House elections in the middle of a Presidential term are called midterm elections.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0000●0	0000000000	00000		0000

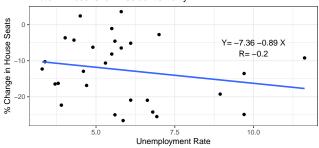
Midterm Elections

- Elections for the U.S. House of Representatives occur every two years, while elections for the U.S. president occurs every 4 years.
 - House elections in the middle of a Presidential term are called midterm elections.
- One political theory suggests that high unemployment rate corresponds to worse performance by the President's party in midterm elections.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
0000●0	0000000000	00000		0000

Midterm Elections

- Elections for the U.S. House of Representatives occur every two years, while elections for the U.S. president occurs every 4 years.
 - House elections in the middle of a Presidential term are called midterm elections.
- One political theory suggests that high unemployment rate corresponds to worse performance by the President's party in midterm elections.



Midterm Results for President's Party

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
00000●	0000000000	00000	000000	0000
Unemployment	Model			

• Our data consists of results for (almost) all midterm elections between 1900 and 2020

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
00000●	0000000000	00000		0000

- Our data consists of results for (almost) all midterm elections between 1900 and 2020
 - Results during the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%, respectively.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
00000●	0000000000	00000		0000

- Our data consists of results for (almost) all midterm elections between 1900 and 2020
 - Results during the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%, respectively.
- Our data is not a sample from historical midterm elections

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
00000●	0000000000	00000		0000

- Our data consists of results for (almost) all midterm elections between 1900 and 2020
 - Results during the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%, respectively.
- Our data is not a sample from historical midterm elections
- But we can treat the many effects complicated effects that influence midterm performance as random variables
 - We can create a model for midterm performance, and treat our data as a random sample from the collection of all theoretical midterm election results according to this model

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
00000●	0000000000	00000		0000

- Our data consists of results for (almost) all midterm elections between 1900 and 2020
 - Results during the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%, respectively.
- Our data is not a sample from historical midterm elections
- But we can treat the many effects complicated effects that influence midterm performance as random variables
 - We can create a model for midterm performance, and treat our data as a random sample from the collection of all theoretical midterm election results according to this model
- Not every random sample from this model will be have the same regression statistics (slope, intercept, correlation, standard deviation of residuals)

- Our data consists of results for (almost) all midterm elections between 1900 and 2020
 - Results during the Great Depression (1934 and 1938) were removed because the unemployment rate was 21% and 18%, respectively.
- Our data is not a sample from historical midterm elections
- But we can treat the many effects complicated effects that influence midterm performance as random variables
 - We can create a model for midterm performance, and treat our data as a random sample from the collection of all theoretical midterm election results according to this model
- Not every random sample from this model will be have the same regression statistics (slope, intercept, correlation, standard deviation of residuals)
- We're interested in assessing how much these statistics may change, just due to the randomness in this model

Section 2

Hypothesis Tests

Prof. Wells

Hypotheses

- Null Hypothesis: There is no linear relationship between Unemployment X and Percent Change in Midterm Seats Y
- Alternative Hypothesis: There is a negative linear relationship between Unemployment X and Midterm Results Y

$$H_0:\beta_1=0 \qquad H_a:\beta_1<0$$

Hypotheses

- Null Hypothesis: There is no linear relationship between Unemployment X and Percent Change in Midterm Seats Y
- Alternative Hypothesis: There is a negative linear relationship between Unemployment X and Midterm Results Y

$$H_0:\beta_1=0 \qquad H_a:\beta_1<0$$

Method

 If there is no linear relationship, then the pairing between X and Y is superficial and we can shuffle the values of Y among the values of X to simulate a similar data set:

Hypotheses

- Null Hypothesis: There is no linear relationship between Unemployment X and Percent Change in Midterm Seats Y
- Alternative Hypothesis: There is a negative linear relationship between Unemployment X and Midterm Results Y

$$H_0:\beta_1=0 \qquad H_a:\beta_1<0$$

Method

- If there is no linear relationship, then the pairing between X and Y is superficial and we can shuffle the values of Y among the values of X to simulate a similar data set:
 - For each midterm election, record unemployment rate, but randomly choose percent change in house seats from among all recorded percent changes (without replacement)

Hypotheses

- Null Hypothesis: There is no linear relationship between Unemployment X and Percent Change in Midterm Seats Y
- Alternative Hypothesis: There is a negative linear relationship between Unemployment X and Midterm Results Y

$$H_0:\beta_1=0 \qquad H_a:\beta_1<0$$

Method

- If there is no linear relationship, then the pairing between X and Y is superficial and we can shuffle the values of Y among the values of X to simulate a similar data set:
 - For each midterm election, record unemployment rate, but randomly choose percent change in house seats from among all recorded percent changes (without replacement)
 - Compute the slope of the regression model for this simulated data set

Hypotheses

- Null Hypothesis: There is no linear relationship between Unemployment X and Percent Change in Midterm Seats Y
- Alternative Hypothesis: There is a negative linear relationship between Unemployment X and Midterm Results Y

$$H_0:\beta_1=0 \qquad H_a:\beta_1<0$$

Method

- If there is no linear relationship, then the pairing between X and Y is superficial and we can shuffle the values of Y among the values of X to simulate a similar data set:
 - For each midterm election, record unemployment rate, but randomly choose percent change in house seats from among all recorded percent changes (without replacement)
 - Compute the slope of the regression model for this simulated data set
 - Repeat several times to assess variability in slope assuming H_0 is true

Confidence Intervals 00000 Conditions for Inference

Theory-Based Methods 0000

A Few Shuffles

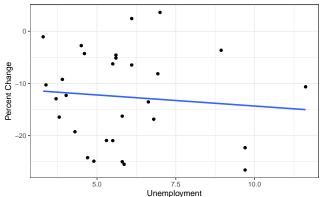
midterms_house %>%	
<pre>specify(house_change ~ unemp) %>%</pre>	
hypothesize(null = "independence")	%>%
<pre>generate(1, type = "permute")</pre>	

## #	A tibble: 6 x 2	##	# A tibble: 6 3	κ 2	##	# A tibble: 6 x 2
##	house_change unemp	##	house_change	unemp	##	house_change unemp
##	<dbl> <dbl></dbl></dbl>	##	<dbl></dbl>	<dbl></dbl>	##	<dbl> <dbl></dbl></dbl>
## 1	-10.6 11.6	##	1 -4.28	11.6	##	1 -16.3 11.6
## 2	-19.3 4.3	##	2 -12.9	4.3	##	2 -9.22 4.3
## 3	-1.07 3.29	##	3 -16.3	3.29	##	3 -10.6 3.29
## 4	-25.5 5.86	##	4 -20.9	5.86	##	4 -4.57 5.86
## 5	-13.5 6.63	##	5 -24.2	6.63	##	5 -12.9 6.63
## 6	-10.3 3.38	##	6 -21.0	3.38	##	6 -2.75 3.38

Confidence Intervals 00000 Conditions for Inference

Theory-Based Methods 0000

Scatterplots of Synthetic Data I

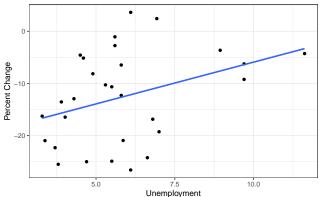


Simulated Data 1

Hypothesis Tests 0000000000 Confidence Intervals 00000 Conditions for Inference

Theory-Based Methods 0000

Scatterplots of Synthetic Data II

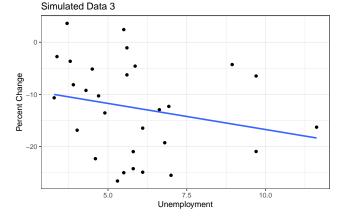


Simulated Data 2

Conditions for Inference

Theory-Based Methods 0000

Scatterplots of Synthetic Data III



Note: location of individual points change, but general clusters do not.

Simple Linear Regression	Hypothesis Tests 000000●000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

Simple Linear Regression	Hypothesis Tests 000000●000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Calculate Statistics

Now we generate 1000 replicates, and compute the slope of the regression line for each

```
midterms_house %>%
  specify(house_change ~ unemp) %>%
  hypothesize(null = "independence") %>%
  generate(1000, type = "permute")
  calculate( stat = "slope")
```

Simple Linear Regression	Hypothesis Tests 000000€000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Calculate Statistics

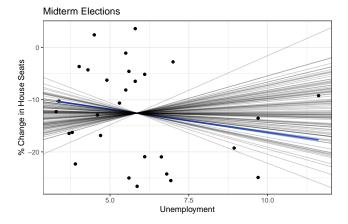
Now we generate 1000 replicates, and compute the slope of the regression line for each

```
midterms_house %>%
  specify(house_change ~ unemp) %>%
  hypothesize(null = "independence") %>%
  generate(1000, type = "permute")
  calculate( stat = "slope")
```

```
## Response: house change (numeric)
## Explanatory: unemp (numeric)
## Null Hypothesis: independence
## # A tibble: 6 x 2
    replicate stat
##
        <int> <dbl>
##
            1 - 0.105
## 1
            2 - 1.23
## 2
            3 0.0265
## 3
         4 -0.931
## 4
## 5
          5 0.600
            6 - 0.0527
## 6
```

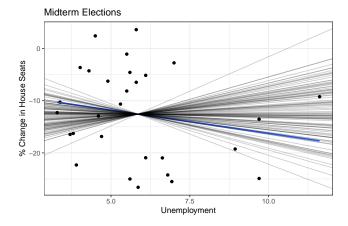
Simple Linear Regression	Hypothesis Tests 0000000●00	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Visualizing 1000 Slopes



Simple Linear Regression	Hypothesis Tests 0000000●00	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

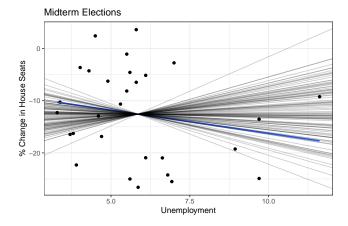
Visualizing 1000 Slopes



• Most lines are approximately horizontal. But some have positive or negative slope.

Simple Linear Regression	Hypothesis Tests 0000000●00	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Visualizing 1000 Slopes

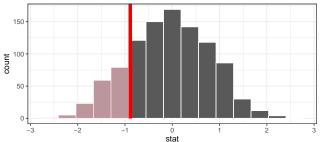


- Most lines are approximately horizontal. But some have positive or negative slope.
- The linear regression line for the original data is shown in blue.

Simple Linear Regression	Hypothesis Tests 00000000●0	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.89, direction = "left")

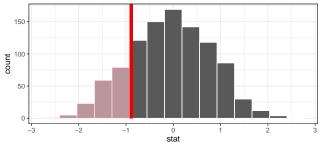


Simulation-Based Null Distribution

Simple Linear Regression	Hypothesis Tests 00000000000	Confidence Intervals	Conditions for Inference	Theory-Based Methods 0000

The Sampling Distribution of b_1

null_slope %>% visualize()+shade_p_value(obs_stat = -0.89, direction = "left")



Simulation-Based Null Distribution

null_slope %>% get_p_value(obs_stat = -0.89, direction = "left")

A tibble: 1 x 1
p_value
<dbl>
1 0.179

Simple Linear Regression	Hypothesis Tests 000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

Simple Linear Regression	Hypothesis Tests 000000000●	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

• A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
000000	000000000●	00000		0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats

Simple Linear Regression	Hypothesis Tests 000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats
- Does this mean there is **no** relationship between Unemployment and Change in House Seats?

Simple Linear Regression	Hypothesis Tests 000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats
- Does this mean there is **no** relationship between Unemployment and Change in House Seats?
 - No! Failing to reject H_0 is not the same as showing that H_0 is true.

Simple Linear Regression	Hypothesis Tests 000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats
- Does this mean there is **no** relationship between Unemployment and Change in House Seats?
 - No! Failing to reject H_0 is not the same as showing that H_0 is true.
 - Perhaps there is a small effect, but our sample size was insufficient to detect it

Simple Linear Regression	Hypothesis Tests 000000000●	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats
- Does this mean there is **no** relationship between Unemployment and Change in House Seats?
 - No! Failing to reject H_0 is not the same as showing that H_0 is true.
 - Perhaps there is a small effect, but our sample size was insufficient to detect it
 - Perhaps there is an effect, but it is non-linear

Simple Linear Regression	Hypothesis Tests 000000000●	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000
Conclusion				

- A slope like this is consistent with those arising due to chance if there were no relationship between Unemployment and Change in House Seats.
 - The data does not provide evidence of a linear relationship between Unemployment and Change in House Seats
- Does this mean there is **no** relationship between Unemployment and Change in House Seats?
 - No! Failing to reject H_0 is not the same as showing that H_0 is true.
 - · Perhaps there is a small effect, but our sample size was insufficient to detect it
 - · Perhaps there is an effect, but it is non-linear
 - Perhaps there is an effect, but it is masked by other confounding variabes.

Simple Linear Regression Hypothesis Tests Conditions Conditions for inference I neory-based well 000000 000000 00000 000000 000000 000000	Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals ●0000	Conditions for Inference	Theory-Based Metho 0000
---	--------------------------	--------------------------------	-------------------------------	--------------------------	----------------------------

Section 3

Confidence Intervals

• A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose Percent Change in Seats could be perfectly predicted by Unemployment Rate (with no deviations or errors). What slope would we expect to find in the linear regression model?

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose Percent Change in Seats could be perfectly predicted by Unemployment Rate (with no deviations or errors). What slope would we expect to find in the linear regression model?
 - It's impossible to say without knowing the variability in the unemployment and percent change data.
 - Reminder: slope tells us the average increase in the response variable per unit increase in the explanatory variable

- A hypothesis test allows us to assess the strength of evidence of a claim, while a confidence interval allows us to assess the magnitude of an effect.
- Suppose Percent Change in Seats could be perfectly predicted by Unemployment Rate (with no deviations or errors). What slope would we expect to find in the linear regression model?
 - It's impossible to say without knowing the variability in the unemployment and percent change data.
 - Reminder: slope tells us the average increase in the response variable per unit increase in the explanatory variable
- If we want to estimate the strength of the linear relationship between the two variables, we should instead create a confidence interval for the correlation *R*.

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00●00	Conditions for Inference	Theory-Based Methods 0000

Bootstrapping for confidence intervals

- To approximate variability in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00●00	Conditions for Inference	Theory-Based Methods 0000

Bootstrapping for confidence intervals

- To approximate variability in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

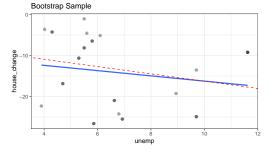
```
midterms house %>%
  specify(house change ~ unemp) %>%
 generate(1, type = "bootstrap")
## # A tibble: 6 x 2
    house change unemp
##
##
           <dbl> <dbl>
## 1
          -13.5
                 9.7
## 2
          -6.47 5.8
        -10.6 5.3
## 3
        -25.5 6.93
## 4
        -26.6 5.86
## 5
## 6
         -19.3 8.94
```

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00●00	Conditions for Inference	Theory-Based Methods 0000

Bootstrapping for confidence intervals

- To approximate variability in the correlation statistic *R*, we create a bootstrap sample by resampling the paired data and then calculation correlation
 - This corresponds to sampling with replacement from the columns of the original sample

```
midterms house %>%
  specify(house change ~ unemp) %>%
  generate(1, type = "bootstrap")
   #
     A tibble: 6 x 2
     house change unemp
##
##
             <dbl> <dbl>
## 1
           -13.5
                    9.7
## 2
           -6.47
                   5.8
                    5.3
##
   3
           -10.6
           -25.5
                    6.93
## 4
                    5.86
## 5
           -26.6
           -19.3
                    8.94
## 6
     A tibble: 1 \times 1
##
        cor
      <dbl>
##
     -0.175
##
   1
```



- Dashed red line indicates regression line for original sample
- Darker points correspond to observations included in bootstrap more than once

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 000€0	Conditions for Inference	Theory-Based Methods 0000

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 000●0	Conditions for Inference	Theory-Based Methods 0000

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
midterms_house %>%
  specify(house_change ~ unemp) %>%
  generate(1000, type = "bootstrap") %>%
  calculate(stat = "correlation")
```

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 000€0	Conditions for Inference	Theory-Based Methods 0000

Bootstrap Distribution for correlation

Now we generate 1000 replicates, and compute the correlation for each

```
midterms_house %>%
  specify(house_change ~ unemp) %>%
  generate(1000, type = "bootstrap") %>%
  calculate(stat = "correlation")
```

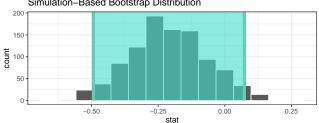
```
## Response: house_change (numeric)
## Explanatory: unemp (numeric)
## # A tibble: 6 x 2
## replicate stat
## <int> <dbl>
## 1 1 -0.305
## 2 2 -0.0639
## 3 3 -0.0805
## 4 4 -0.0308
## 5 5 -0.193
## 6 6 -0.322
```

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 0000●	Conditions for Inference	Theory-Based Methods 0000

The Bootstrap Distribution for R

A 95% confidence interval for correlation ρ is boot_slope %>% get_ci(level = .95, type = "percentile")

```
lower_ci upper_ci
##
## 1
        -0.49
                  0.073
```



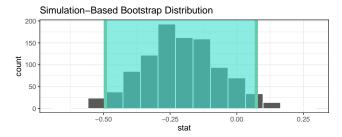
Simulation-Based Bootstrap Distribution

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 0000●	Conditions for Inference	Theory-Based Methods 0000

The Bootstrap Distribution for R

A 95% confidence interval for correlation ρ is boot_slope %>% get_ci(level = .95, type = "percentile")

```
## lower_ci upper_ci
## 1 -0.49 0.073
```



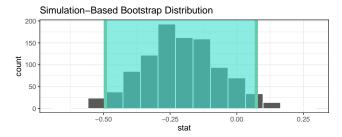
- The original sample had correlation R = -0.2
 - It is possible that Unemployment and Percent Change has between moderately negative correlation (-0.49) and very weak positive correlation (0.07).

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 0000●	Conditions for Inference	Theory-Based Methods 0000

The Bootstrap Distribution for R

A 95% confidence interval for correlation ρ is boot_slope %>% get_ci(level = .95, type = "percentile")

```
## lower_ci upper_ci
## 1 -0.49 0.073
```



- The original sample had correlation R = -0.2
 - It is possible that Unemployment and Percent Change has between moderately negative correlation (-0.49) and very weak positive correlation (0.07).
 - It's also plausible that the two variables have 0 correlation.

Prof. Wells

Inference for Simple Linear Regression

Section 4

Conditions for Inference

Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot

Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot
- **2** The observations should be independent of one another. (Independence)
 - Check using scatterplot/residual plot, as well as sample design
- (Normal) The distribution of residuals should be Normally distributed.
 - Check using histogram of residuals

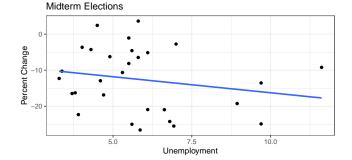
Conditions for Inference: LINE!

In order to responsibly use linear regression for prediction or inference, we require:

- The relationship between explanatory and response variables must be approximately linear. (Linear)
 - Check using scatterplot/residual plot
- **2** The observations should be independent of one another. (Independence)
 - Check using scatterplot/residual plot, as well as sample design
- (Normal) The distribution of residuals should be Normally distributed.
 - Check using histogram of residuals
- The variability of residuals should be roughly constant across entire data set. (Equal Variability)
 - Check using residual plot.

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

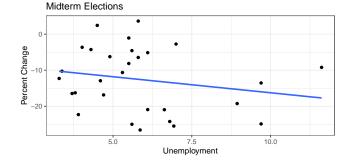
Checking Conditions: Linear



• Data is not tightly clustered around line of best fit

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Checking Conditions: Linear

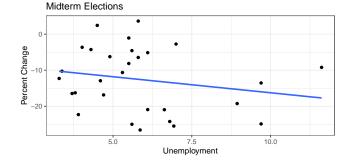


• Data is not tightly clustered around line of best fit

• But this doesn't mean data is not linear. Just that residuals have high variance

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0000

Checking Conditions: Linear



· Data is not tightly clustered around line of best fit

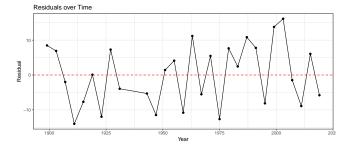
- But this doesn't mean data is not linear. Just that residuals have high variance
- Scatterplot does not show signs of NON-linear relationship

Checking Conditions: Independence

- The assumption that observations are independent is the most important for inference, but also most difficult to check.
 - Data representing repeated observations over time is particular susceptible to dependence
 - · Consecutive observations in a time interval may have unwanted correlation

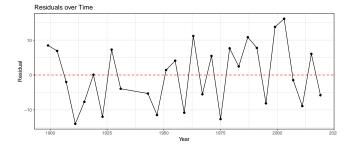
Checking Conditions: Independence

- The assumption that observations are independent is the most important for inference, but also most difficult to check.
 - Data representing repeated observations over time is particular susceptible to dependence
 - · Consecutive observations in a time interval may have unwanted correlation



Checking Conditions: Independence

- The assumption that observations are independent is the most important for inference, but also most difficult to check.
 - Data representing repeated observations over time is particular susceptible to dependence
 - · Consecutive observations in a time interval may have unwanted correlation

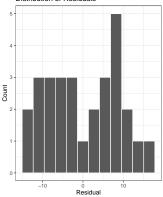


Here, variables over time do not show strong consistent patterns

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
	0000000000	00000	0000●0	0000

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)</pre>
```

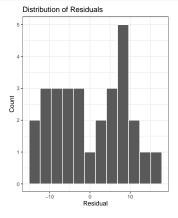
```
ggplot(mod_residuals, aes( x = residual))+geom_histogram(bins = 12, color = "white")
```



Distribution of Residuals

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
	0000000000	00000	○○○○●○	0000

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)
ggplot(mod_residuals, aes( x = residual))+geom_histogram(bins = 12, color = "white")</pre>
```

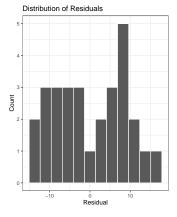


 The distribution appears somewhat symmetric, although with some evidence of bimodality

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
	0000000000	00000	○○○○●○	0000

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)</pre>
```

```
ggplot(mod_residuals, aes( x = residual))+geom_histogram(bins = 12, color = "white")
```

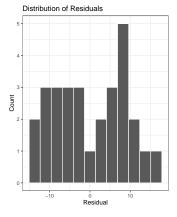


- The distribution appears somewhat symmetric, although with some evidence of bimodality
- This provides some evidence residuals are not Normally distributed.

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
	0000000000	00000	○○○○●○	0000

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)</pre>
```

```
ggplot(mod_residuals, aes( x = residual))+geom_histogram(bins = 12, color = "white")
```



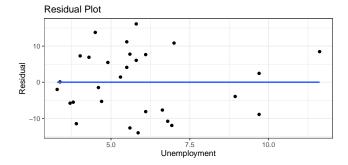
- The distribution appears somewhat symmetric, although with some evidence of bimodality
- This provides some evidence residuals are not Normally distributed.
- This doesn't mean we discard analysis entirely, but we should be more cautious about inferential conclusions

Simple Linear Regression	Hypothesis Tests	Confidence Intervals	Conditions for Inference	Theory-Based Methods
	0000000000	00000	○○○○○●	0000

Checking Conditions: Equal Variability

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)</pre>
```

ggplot(mod_residuals, aes(x = unemp, y = residual))+geom_point()

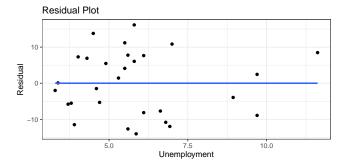


Residuals appear to have constant variability for unemployment between 2 and 7.5

Checking Conditions: Equal Variability

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
mod_residuals <- get_regression_points(my_mod)</pre>
```

ggplot(mod_residuals, aes(x = unemp, y = residual))+geom_point()



Residuals appear to have constant variability for unemployment between 2 and 7.5

• However, data with unemployment greater than 8 is relatively sparse, making it more difficult to assess variability

Section 5

Theory-Based Methods

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

• Can we make inference about the slope β_1 of a linear model without using simulation?

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the *mean*, *standard error*, and *shape* of the sampling distribution for \hat{eta}_1

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for $\hat{\beta}_1$
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

$$SE(\hat{\beta}_1) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}} \quad (\text{DON'T MEMORIZE!})$$

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

$$SE(\hat{\beta}_{1}) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad (\text{DON'T MEMORIZE!})$$

• In practice, we estimate β_0, β_1 in the formula using $\hat{\beta}_0, \hat{\beta}_1$.

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0●00

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

$$SE(\hat{\beta}_{1}) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i}))^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad (\text{DON'T MEMORIZE!})$$

• In practice, we estimate β_0, β_1 in the formula using $\hat{\beta}_0, \hat{\beta}_1$.

• We perfom a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = rac{ ext{sample stat} - ext{null value}}{SE} = rac{\hat{eta}_1 - ext{0}}{SE}$$

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods ○●○○

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

$$SE(\hat{\beta}_{1}) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1}x_{i}))^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad (DON'T MEMORIZE!)$$

- In practice, we estimate β_0, β_1 in the formula using $\hat{\beta}_0, \hat{\beta}_1$.
- We perfom a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{\hat{\beta}_1 - 0}{SE}$$

• And we create a confidence interval for β_1 using

sample stat
$$\pm t^* \cdot SE = \hat{\beta}_1 \pm t^* \cdot SE$$

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 0●00

- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the mean, standard error, and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with mean β_1 .
 - And the standard error is given by:

$$SE(\hat{\beta}_{1}) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_{i} - (\beta_{0} + \beta_{1} x_{i}))^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad (\text{DON'T MEMORIZE!})$$

- In practice, we estimate β_0, β_1 in the formula using $\hat{\beta}_0, \hat{\beta}_1$.
- We perfom a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{\hat{\beta}_1 - 0}{SE}$$

• And we create a confidence interval for β_1 using

sample stat
$$\pm t^* \cdot SE = \hat{\beta}_1 \pm t^* \cdot SE$$

• In both cases, the reference distribution is the *t*-distribution with n - 2 degrees of freedom.

• Can we get test statisics and confidence intervals for β_1 without tedious calculation?

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 00●0

- Can we get test statisics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

- Can we get test statistics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

```
my_mod <- lm(house_change ~ unemp, data = midterms_house)
get_regression_table(my_mod)</pre>
```

A tibble: 2 x 7 ## estimate std error statistic p value lower ci upper ci term <chr>> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## -7.36 5.16 -1.43 0.165 -17.9 3.21 ## 1 intercept ## 2 unemp -0.89 0.835 -1.07 0.296 - 2.600.824

• Can we get test statistics and confidence intervals for β_1 without tedious calculation?

```
    Yes! Using the lm function in R.
    my_mod <- lm(house_change ~ unemp, data = midterms_house)</li>
    get_regression_table(my_mod)
```

```
## # A tibble: 2 x 7
             estimate std error statistic p value lower ci upper ci
##
    term
    <chr>>
                <dbl>
                         <dbl>
                                  <dbl>
                                         <dbl>
                                                  <dbl>
                                                          <dbl>
##
               -7.36
                         5.16
                                  -1.43
                                         0.165
                                                 -17.9
                                                          3.21
## 1 intercept
## 2 unemp
              -0.89
                         0.835 -1.07
                                         0.296 - 2.60 0.824
```

• The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.

• Can we get test statistics and confidence intervals for β_1 without tedious calculation?

```
    Yes! Using the lm function in R.
    my_mod <- lm(house_change ~ unemp, data = midterms_house)</li>
```

```
get_regression_table(my_mod)
```

##	#	A tibble:	2 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-7.36	5.16	-1.43	0.165	-17.9	3.21
##	2	unemp	-0.89	0.835	-1.07	0.296	-2.60	0.824

- The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.
- The upper and lower bounds for the 95% confidence interval are lower_ci and upper_ci

• Can we get test statistics and confidence intervals for β_1 without tedious calculation?

```
    Yes! Using the lm function in R.
    my_mod <- lm(house_change ~ unemp, data = midterms_house)</li>
```

```
get_regression_table(my_mod)
```

##	#	A tibble:	2 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-7.36	5.16	-1.43	0.165	-17.9	3.21
##	2	unemp	-0.89	0.835	-1.07	0.296	-2.60	0.824

- The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.
- The upper and lower bounds for the 95% confidence interval are lower_ci and upper_ci
- The table also gives similar information for the intercept and hypothesis test $H_0: \beta_0 = 0$ (but this is less useful in practice)

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

• Suppose we are interested in investigating the correlation ρ between two variables

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ρ between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{\frac{1-R^2}{n-2}}$$

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ho between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{\frac{1-R^2}{n-2}}$$

• To test the hypothesis $H_0: \rho = 0$ against $H_a: \rho \neq 0$, use the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{R - 0}{\sqrt{\frac{1 - R^2}{n - 2}}}$$

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ho between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{rac{1-R^2}{n-2}}$$

• To test the hypothesis $H_0: \rho = 0$ against $H_a: \rho \neq 0$, use the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{R - 0}{\sqrt{\frac{1 - R^2}{n - 2}}}$$

where *t* follows the *t*-distribution with n - 2 degrees of freedom.

• There is a formula for confidence intervals, but it is considerably more complicated.

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ho between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{rac{1-R^2}{n-2}}$$

• To test the hypothesis $H_0: \rho = 0$ against $H_a: \rho \neq 0$, use the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{R - 0}{\sqrt{\frac{1 - R^2}{n - 2}}}$$

- There is a formula for confidence intervals, but it is considerably more complicated.
 - This is because the sampling distribution for R is highly skewed unless R is close to 0

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ho between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{rac{1-R^2}{n-2}}$$

• To test the hypothesis $H_0: \rho = 0$ against $H_a: \rho \neq 0$, use the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{R - 0}{\sqrt{\frac{1 - R^2}{n - 2}}}$$

- There is a formula for confidence intervals, but it is considerably more complicated.
 - This is because the sampling distribution for R is highly skewed unless R is close to 0
 - Therefore, we can't use the Normal approximation for *R* unless either the sample size is very large, or *R* is close to 0.

Simple Linear Regression	Hypothesis Tests 0000000000	Confidence Intervals 00000	Conditions for Inference	Theory-Based Methods 000●

- Suppose we are interested in investigating the correlation ρ between two variables
- The standard error for the sample correlation R when $\rho = 0$ is

$$SE(R) = \sqrt{rac{1-R^2}{n-2}}$$

• To test the hypothesis $H_0: \rho = 0$ against $H_a: \rho \neq 0$, use the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE} = \frac{R - 0}{\sqrt{\frac{1 - R^2}{n - 2}}}$$

- There is a formula for confidence intervals, but it is considerably more complicated.
 - This is because the sampling distribution for R is highly skewed unless R is close to 0
 - Therefore, we can't use the Normal approximation for *R* unless either the sample size is very large, or *R* is close to 0.
 - This is one situation where the simulation-based method clearly outperforms the theory-based method