Chi-Squared Tests

Prof. Wells

STA 209, 5/3/23

Outline

In this lecture, we will...

- Determine whether data follows a certain distribution
- Investigate the chi-squared distribution.
- Use the chi-squared statistic to determine whether two variables are independent

3/21

Section 1

The Chi-Squared Test for Goodness of Fit

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

• If the single variable has just 2 levels, we can consider the proportion *p* for one level

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

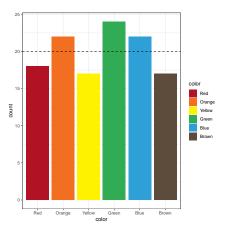
- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions p₁ - p₂.

Suppose we want to investigate either 1 categorical variable or the relationship between 2 categorical variables.

- If the single variable has just 2 levels, we can consider the proportion p for one level
- If both response and explanatory variables have 2 levels, we can consider the difference in proportions p₁ - p₂.

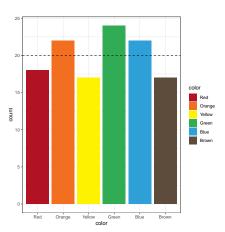
What can we do if one or both the variables are categorical with more than 2 levels?

Suppose we are interested in whether the 6 colors of M&Ms appear with equal frequency. Data from 1 jumbo bag of 120 M&Ms is summarized in the graphic below:

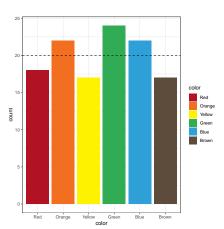


Prof. Wells Chi-Squared Tests STA 209, 5/3/23 5/

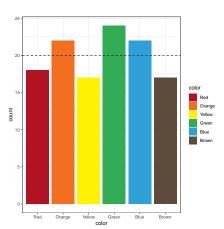
Suppose we are interested in whether the 6 colors of M&Ms appear with equal frequency. Data from 1 jumbo bag of 120 M&Ms is summarized in the graphic below:



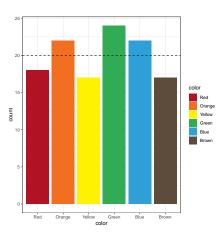
 Note that Green M&Ms exceed by the expected count by 20%.



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...



- Note that Green M&Ms exceed by the expected count by 20%.
- Does this give good evidence that M&M colors appear at different rates?
 - Suppose we had 20 colors instead of 6...
 - Would it really be unusual for 1 color to be over- or under-represented?

6/21

Data

• Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

6/21

Data

• Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

• We are interested in assessing whether the colors are all equally represented.

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

- We are interested in assessing whether the colors are all equally represented.
 - We can represent this as a statement about the theoretical proportion of each each color, $p_r, p_o, p_y, p_g, p_b, p_{br}$

Data

Let's consider some numeric data:

Color	Red	Orange	Yellow	Green	Blue	Brown
Frequency	.15	.183	.142	.2	.183	.142
Counts	18	22	17	24	22	17
Expected Counts	20	20	20	20	20	20
Difference (Obs - Exp)	-2	2	-3	4	2	-3

- We are interested in assessing whether the colors are all equally represented.
 - We can represent this as a statement about the theoretical proportion of each each color, p_r, p_o, p_y, p_g, p_b, p_{br}
- We want to test the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$

 H_a : at least one of the p's is not as specified above

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

```
## # A tibble: 6 x 8
##
     color
             Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 expected observed
     <chr>
            <chr>
                       <chr>>
                                <chr>>
                                           <chr>>
                                                    <chr>>
                                                              <chr>>
                                                                        <chr>>
##
## 1 Blue
             22
                       10
                                 22
                                           13
                                                    18
                                                              20
                                                                        22
  2 Brown
            15
                       25
                                 17
                                           17
                                                    24
                                                              20
                                                                        17
## 3 Green
             28
                       17
                                 24
                                           23
                                                                        24
                                                    18
                                                              20
                       21
                                 23
                                           29
                                                    26
                                                              20
                                                                        22
## 4 Orange 19
## 5 Red
             19
                                 23
                       20
                                           19
                                                    13
                                                              20
                                                                        18
## 6 Yellow 17
                       27
                                 11
                                           19
                                                    21
                                                              20
                                                                        17
```

Randomization

 Since we have theoretical values for each proportion, we can simulate samples under the null hypothesis

```
## # A tibble: 6 x 8
##
     color
             Sample_1 Sample_2 Sample_3 Sample_4 Sample_5 expected observed
     <chr>
            <chr>
                       <chr>>
                                <chr>>
                                           <chr>>
                                                    <chr>>
                                                              <chr>>
                                                                        <chr>>
##
             22
                       10
                                 22
                                           13
                                                     18
                                                               20
                                                                         22
## 1 Blue
  2 Brown
            15
                       25
                                 17
                                           17
                                                     24
                                                               20
                                                                         17
## 3 Green
             28
                       17
                                 24
                                           23
                                                                        24
                                                     18
                                                               20
                       21
                                 23
                                           29
                                                     26
                                                                        22
  4 Orange 19
                                                               20
  5 Red
             19
                                 23
                       20
                                           19
                                                     13
                                                               20
                                                                        18
## 6 Yellow 17
                       27
                                 11
                                                                        17
                                           19
                                                     21
                                                               20
```

• How does the observed data compare?

 We need a statistic that measures how much our sample counts differ from the expected counts. This statistic should...

- We need a statistic that measures how much our sample counts differ from the expected counts. This statistic should...
 - Take large values when the sample and expected counts differ
 - Take small values when the sample and expected values are similar
 - Be standardized, so that large expected counts don't on their own lead to large values of the statistic.

- We need a statistic that measures how much our sample counts differ from the expected counts. This statistic should...
 - Take large values when the sample and expected counts differ
 - Take small values when the sample and expected values are similar
 - Be standardized, so that large expected counts don't on their own lead to large values of the statistic.
- The most commonly used statistic for this purpose is the chi-squared statistic χ^2 :

$$\chi^2 = \sum \frac{\text{(Observed - Expected)}^2}{\text{Expected}}$$

- We need a statistic that measures how much our sample counts differ from the expected counts. This statistic should...
 - Take large values when the sample and expected counts differ
 - Take small values when the sample and expected values are similar
 - Be standardized, so that large expected counts don't on their own lead to large values of the statistic.
- The most commonly used statistic for this purpose is the chi-squared statistic χ^2 :

$$\chi^2 = \sum \frac{\text{(Observed - Expected)}^2}{\text{Expected}}$$

The sum is taken over all values of the categorical variable.

- We need a statistic that measures how much our sample counts differ from the expected counts. This statistic should...
 - Take large values when the sample and expected counts differ
 - Take small values when the sample and expected values are similar
 - Be standardized, so that large expected counts don't on their own lead to large values of the statistic.
- The most commonly used statistic for this purpose is the chi-squared statistic χ^2 :

$$\chi^2 = \sum \frac{\text{(Observed - Expected)}^2}{\text{Expected}}$$

- The sum is taken over all values of the categorical variable.
- For example, if the categorical variable has 6 levels, this sum has 6 terms.

• What is the χ^2 statistic for our observed sample?

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

• But what counts as large?

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 simulated samples

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 simulated samples

```
## # A tibble: 5 x 2
```

• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 simulated samples

```
## # A tibble: 5 x 2
```

• So our statistic is much smaller than the statistics for these 5 samples.

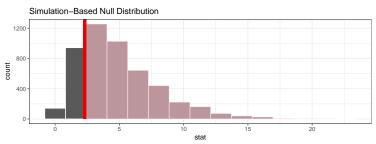
• What is the χ^2 statistic for our observed sample?

$$\chi^2 = \frac{(22-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(24-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(18-20)^2}{20} + \frac{(17-20)^2}{20} = 2.3$$

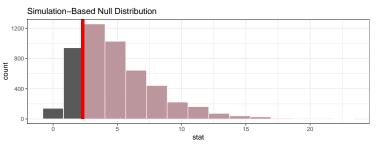
- But what counts as large?
- Let's compute the χ^2 statistic for each of the previous 5 simulated samples
- ## # A tibble: 5 x 2
- ## r chi2
- ## <chr> <dbl>
- ## 1 Sample_1 5.2
- ## 2 Sample_2 9.2
- ## 3 Sample_3 6.4
- ## 4 Sample_4 7.5
- ## 5 Sample_5 5.5
 - So our statistic is much smaller than the statistics for these 5 samples.
 - But is this a fluke?

 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution

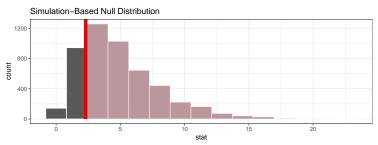


 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution



• For this data, it seems that most statistics are between 0 and 10.

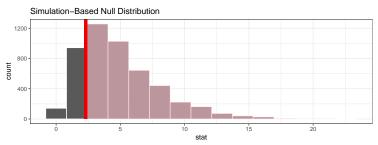
 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution



- For this data, it seems that most statistics are between 0 and 10.
 - Almost no statistic is greater than 15. And NONE are greater than 20.

Distribution of χ^2 statistics

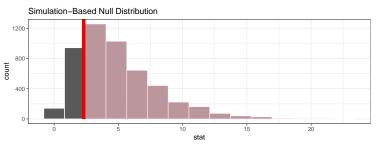
 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution



- For this data, it seems that most statistics are between 0 and 10.
 - Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2 = 2.3$ is very moderate

Distribution of χ^2 statistics

 \bullet Let's calculate the χ^2 statistic for several thousand other samples and plot the distribution



- For this data, it seems that most statistics are between 0 and 10.
 - Almost no statistic is greater than 15. And NONE are greater than 20.
- Our observed statistic of $\chi^2 = 2.3$ is very moderate
 - A statistic more extreme would occur about 80% of the time!

Prof. Wells Chi-Squared Tests STA 209, 5/3/23 10

Using infer

• How do we find the probability that a particular χ^2 value would occur?

Using infer

- How do we find the probability that a particular χ^2 value would occur?
 - Use infer!

Using infer

##

- How do we find the probability that a particular χ^2 value would occur?
 - Use infer!

<dbl>

• We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$

 H_a : at least one of the $p\sp{'}{\rm s}$ is not as specified above

• We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the p 's is not as specified above

• Our observed statistic $\chi^2 = 2.3$ had a simulated p-value of approximately 0.8

• We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$

 H_a : at least one of the p's is not as specified above

- ullet Our observed statistic $\chi^2=2.3$ had a simulated p-value of approximately 0.8
- ullet We do not reject H_0 at the lpha=0.05 significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.

We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the p 's is not as specified above

- Our observed statistic $\chi^2 = 2.3$ had a simulated p-value of approximately 0.8
- ullet We do not reject H_0 at the lpha=0.05 significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.

• We tested the following hypotheses:

$$H_0: p_r = \frac{1}{6}, \ p_o = \frac{1}{6}, \ p_y = \frac{1}{6}, \ p_g = \frac{1}{6}, \ p_b = \frac{1}{6}, \ p_{br} = \frac{1}{6}$$
 $H_a:$ at least one of the p 's is not as specified above

- Our observed statistic $\chi^2 = 2.3$ had a simulated p-value of approximately 0.8
- ullet We do not reject H_0 at the lpha=0.05 significance level (or at any reasonable level)
 - It is likely that such a difference in counts would arise due to chance, if the null hypothesis were true.
- The test provides inconclusive evidence that frequency differs among colors.
 - Importantly, it does not verify that colors ARE equally distributed.

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

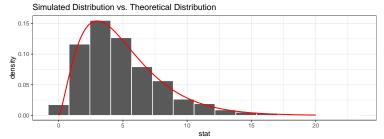
If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.

Prof. Wells Chi-Squared Tests STA 209, 5/3/23 13/2

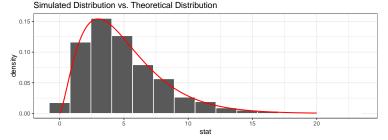
If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



Use pchisq(q = ..., df = ..., lower.tail = F) to find the area to the right
of the observed statistic q.

Prof. Wells Chi-Squared Tests STA 209, 5/3/23 13

If we have independent observations on a categorical variable with k levels, and each observed count is at least 5,

ullet Then χ^2 is approximately the Chi-Squared distribution with k-1 degrees of freedom.



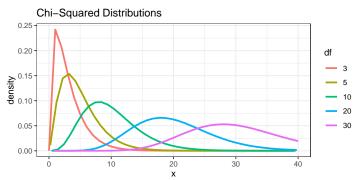
• Use pchisq(q = ..., df = ..., lower.tail = F) to find the area to the right of the observed statistic q.

[1] 0.8062669

Prof. Wells Chi-Squared Tests STA 209, 5/3/23 13 /

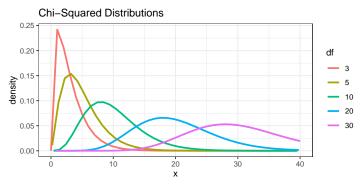
The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



The Chi-Squared Distribution

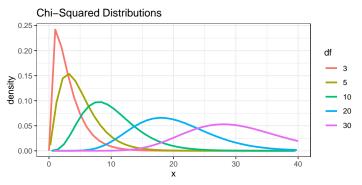
Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



• The mean of a chi-square distribution is df, while the standard deviation is $\sqrt{2 \cdot df}$

The Chi-Squared Distribution

Just Normal distributions are described by their mean μ and standard deviation σ , the Chi-Square distribution is described by its degrees of freedom df.



- The mean of a chi-square distribution is df, while the standard deviation is $\sqrt{2\cdot df}$
- \bullet For Chi-Squared tests, larger degrees of freedom require larger χ^2 statistics to reject $H_0.$

Section 2

Chi-Square Test for Independence

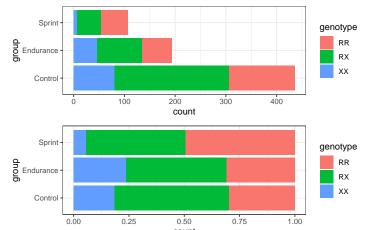
Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

Genetic Basis for Fast Twitch Muscles

A study on genetics and fast-twitch muscles includes a sample of sprinters, endurance athletes, and a control group of non-athletes.

• Is there an association between a genotype classification (RR, RX, or XX) and group?



Contingency Table

Consider the contingency table for group and genotype

```
table(twitch$group, twitch$genotype) %>%
                                           table(twitch$group, twitch$genotype) %>%
  addmargins()
                                             prop.table( 1)
##
                                           ##
##
                    R.X
                         XX Sum
                R.R.
                                           ##
                                                                     RX
                                                                           XΧ
                                                              R.R.
##
                   226
                         80 436
     Control
               130
                                                 Control
                                                           0.298 0.518 0.183
                                           ##
                    88
                         46 194
##
     Endurance
                60
                                           ##
                                                 Endurance 0.309 0.454 0.237
##
     Sprint
                53 48
                          6 107
                                           ##
                                                 Sprint
                                                           0.495 0.449 0.056
               243 362 132 737
##
     Sum
```

Contingency Table

Consider the contingency table for group and genotype

```
table(twitch$group, twitch$genotype) %>%
                                           table(twitch$group, twitch$genotype) %>%
  addmargins()
                                             prop.table( 1)
##
                                           ##
                    R.X
                         XX Sum
##
                R.R.
                                           ##
                                                              R.R.
                                                                    R.X
                                                                          XΧ
               130 226
##
     Control
                        80 436
                                                Control
                                                           0.298 0.518 0.183
                                           ##
                    88
                         46 194
##
     Endurance
                60
                                                Endurance 0.309 0.454 0.237
                                           ##
##
     Sprint
                53 48
                          6 107
                                           ##
                                                Sprint
                                                           0.495 0.449 0.056
##
     Sum
               243 362 132 737
```

 If group and genotype were independent, we would expect proportions to all be equal to the marginal proportions for genotype:

```
marginal proportions for genotype:
table(twitch$genotype) %>% prop.table()
```

```
## RR RX XX
## 0.33 0.49 0.18
```

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

	RR	RX	XX
Control	144	214	78
Endurance	64	95	35
Sprint	35	52	19

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

	RR	RX	XX
Control	144	214	78
Endurance	64	95	35
Sprint	35	52	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Endurance	60	88	46	194
Sprint	53	48	6	107
Sum	243	362	132	737

If the null hypothesis is true, we can multiply the marginal proportions of genotype by the observed counts for group to get expected counts for each genotype-group pair:

	RR	RX	XX
Control	(0.33)(436)	(0.49)(436)	(0.18)(436)
Endurance	(0.33)(194)	(0.49)(194)	(0.18)(194)
Sprint	(0.33)(107)	(0.49)(107)	(0.18)(107)

	RR	RX	XX
Control	144	214	78
Endurance	64	95	35
Sprint	35	52	19
Spriit	33	32	19

• We can compare to the observed data:

	RR	RX	XX	Sum
Control	130	226	80	436
Endurance	60	88	46	194
Sprint	53	48	6	107
Sum	243	362	132	737

• As before, we compute the chi-square statistic

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} = 25$$

The Null Distribution

Under the null hypothesis, group and genotype are independent.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

The Null Distribution

Under the null hypothesis, group and genotype are independent.

- We can simulate data under H_0 by permuting the group labels among individuals. (Just like we did for hypothesis tests for 2 proportions)
 - After each permutation, we compute a new χ^2 statistic.
 - The distribution of these statistics gives the null distribution.

##		ID	group	genotype	##		ID	group	genotype
##	1	1	${\tt Endurance}$	RX	##	1	1	${\tt Endurance}$	RX
##	2	2	Sprint	XX	##	2	2	Sprint	RX
##	3	3	Control	XX	##	3	3	Control	XX
##	4	4	Sprint	RX	##	4	4	Sprint	RR
##	5	5	Control	RX	##	5	5	Control	XX
##	6	6	Sprint	RR	##	6	6	Sprint	RX

Chi-Square Statistic in infer

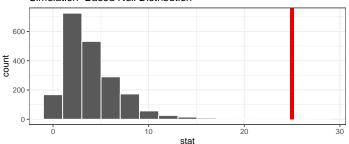
Using infer...

Chi-Square Statistic in infer

```
Using infer...
```

```
set.seed(49)
twitch_null <- twitch %>%
  specify(genotype ~ group) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 2000, type = "permute") %>%
  calculate(stat="Chisq")
twitch_null %>% visualize()+shade_p_value(obs_stat = 25, direction = "right")
```

Simulation-Based Null Distribution



1

```
Using infer, the approximate p-value is
```

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
     p_value
##
       <dbl>
      0.0005
```

p_value

##

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
```

```
* 1 0.0005

• Accordinging to theory-based methods, the \chi^2 statistic follows the \chi^2 distribution with (k-1)\cdot(p-1) degrees of freedom, where k and p are the number of levels of the response and explanatory variables.
```

Using infer, the approximate p-value is

pchisq(q = 25, df = 4, lower.tail = F)

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
## dbl>
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1)\cdot(p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
## [1] 5e-05
```

0.0005

21/21

##

0.0005

P-value and conclusions

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
  # A tibble: 1 x 1
     p value
       <db1>
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1) \cdot (p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.

<dbl>

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p value
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1)\cdot(p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?

<dbl>

Using infer, the approximate p-value is

```
twitch_null %>% get_p_value(obs_stat = 25, direction = "right")
## # A tibble: 1 x 1
## p_value
```

• Accordinging to theory-based methods, the χ^2 statistic follows the χ^2 distribution with $(k-1)\cdot(p-1)$ degrees of freedom, where k and p are the number of levels of the response and explanatory variables.

```
pchisq(q = 25, df = 4, lower.tail = F)
## [1] 5e-05
```

- At significance $\alpha = 0.01$, we reject H_0 in favor the alternative:
 - This sample gives good evidence that group and genotype are associated.
- What association is there?
 - We'll need to further study and experiment to find out.