Inference for Multiple Linear Regression

Prof. Wells

STA 209, 5/10/23

Outline

In this lecture, we will...

- Use R to perform theory-based inference for regression models
- Review framework for multilinear regression
- Discuss inference procedures for MLR models
- Investigate tools for "Model Selection"

Section 1

Theory-Based Methods

Model Assumptions for MLR 00000 Model Selection

Inference for Slope

• Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$

Theory-Based Methods ○●○	Multiple Linear Regression	Model Assumptions for MLR 00000	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model without using simulation?

Theory-Based Methods O●O	Multiple Linear Regression	Model Assumptions for MLR	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the standard error and shape of the sampling distribution for $\hat{\beta}_1$

Theory-Based Methods ○●○	Multiple Linear Regression	Model Assumptions for MLR	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the standard error and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with standard error

Theory-Based Methods O●O	Multiple Linear Regression	Model Assumptions for MLR	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the standard error and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with standard error

$$SE(\hat{\beta}_1) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

(DON'T WRITE / MEMORIZE!)

Theory-Based Methods O●O	Multiple Linear Regression	Model Assumptions for MLR 00000	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model *without* using simulation?
 - We need to know the standard error and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with standard error

$$SE(\hat{\beta}_1) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}} \quad (DON'T WRITE / MEMORIZE!)$$

• We perform a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

Theory-Based Methods	Multiple Linear Regression	Model Assumptions for MLR	Model Selection
○●○	0000000	00000	

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model *without* using simulation?
 - We need to know the standard error and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with standard error

$$SE(\hat{\beta}_1) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}} \quad (DON'T WRITE / MEMORIZE!)$$

• We perform a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

• And we create a confidence interval for β_1 using

$$\hat{\beta}_1 \pm t^* \cdot SE(\hat{\beta}_1)$$

Theory-Based Methods O●O	Multiple Linear Regression	Model Assumptions for MLR 00000	Model Selection

- Consider the linear model $Y = \beta_0 + \beta_1 X + \epsilon$
- Can we make inference about the slope β_1 of a linear model without using simulation?
 - We need to know the standard error and shape of the sampling distribution for \hat{eta}_1
- If LINE conditions are satisfied, then $\hat{\beta}_1$ is Normally distributed with standard error

$$SE(\hat{\beta}_{1}) = \sqrt{\frac{1}{n-2} \frac{\sum_{i=1}^{n} (y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i}))^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad (\text{DON'T WRITE / MEMORIZE!})$$

• We perform a hypothesis test of H_0 : $\beta_1 = 0$ using the test statistic

$$t = \frac{\text{sample stat} - \text{null value}}{SE(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - 0}{SE(\hat{\beta}_1)}$$

• And we create a confidence interval for β_1 using

$$\hat{\beta}_1 \pm t^* \cdot SE(\hat{\beta}_1)$$

• The reference distribution is the *t*-distribution with n - 2 degrees of freedom.

Model Assumptions for MLR 00000 Model Selection

Calculating test statistics and confidence intervals

• Can we get test statistics and confidence intervals for β_1 without tedious calculation?

Model Assumptions for MLR 00000 Model Selection 00000

Calculating test statistics and confidence intervals

- Can we get test statistics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

Model Assumptions for MLR

Model Selection 00000

Calculating test statistics and confidence intervals

- Can we get test statistics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

```
my_mod <- lm(Y ~ X, data = my_data)
get_regression_table(my_mod)</pre>
```

```
## # A tibble: 2 \times 7
##
            estimate std_error statistic p_value lower_ci upper_ci
    term
##
    <chr>
               <dbl>
                       <dbl>
                                <dbl> <dbl> <dbl>
                                                     <dbl>
## 1 intercept 4.86
                       3.17 1.53 0.137 -1.64 11.4
## 2 X
               1.67
                       0.625
                                2.67
                                      0.013 0.386 2.95
```

Model Assumptions for MLR 00000 Model Selection

Calculating test statistics and confidence intervals

- Can we get test statistics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

```
my_mod <- lm(Y ~ X, data = my_data)
get_regression_table(my_mod)</pre>
```

##	#	A tibble:	2 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	4.86	3.17	1.53	0.137	-1.64	11.4
##	2	Х	1.67	0.625	2.67	0.013	0.386	2.95

• The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.

Model Assumptions for MLR 00000 Model Selection

Calculating test statistics and confidence intervals

- Can we get test statistics and confidence intervals for β_1 without tedious calculation?
 - Yes! Using the 1m function in R.

```
my_mod <- lm(Y ~ X, data = my_data)
get_regression_table(my_mod)</pre>
```

##	#	A tibble:	2 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	4.86	3.17	1.53	0.137	-1.64	11.4
##	2	Х	1.67	0.625	2.67	0.013	0.386	2.95

- The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.
- The upper and lower bounds for the 95% confidence interval are lower_ci and upper_ci

Calculating test statistics and confidence intervals

- Can we get test statistics and confidence intervals for β₁ without tedious calculation?
 - Yes! Using the 1m function in R.

```
my_mod <- lm(Y ~ X, data = my_data)
get_regression_table(my_mod)</pre>
```

##	#	A tibble:	2 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	4.86	3.17	1.53	0.137	-1.64	11.4
##	2	Х	1.67	0.625	2.67	0.013	0.386	2.95

- The theory-based standard error is std_error, the test statistic is statistic, and the corresponding p-value in the t-distribution with n-2 df is p_value.
- The upper and lower bounds for the 95% confidence interval are lower_ci and upper_ci
- The table also gives similar information for the intercept and hypothesis test $H_0: \beta_0 = 0$ (but this is less useful in practice)

Section 2

Multiple Linear Regression

Model Assumptions for MLR 00000 Model Selection

Review: Multiple Regression Model

• In a **multiple linear regression model** (MLR), we express the response variable Y as a linear combination of k explanatory variables X₁, X₂,..., X_k:

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k + \epsilon$$

Review: Multiple Regression Model

• In a **multiple linear regression model** (MLR), we express the response variable Y as a linear combination of k explanatory variables X₁, X₂,..., X_k:

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k + \epsilon$$

• We use the following R code to fit and summarize a linear model: mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get_regression_table(mod)

##	#	A tibble:	4 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	3.26	7.94	0.41	0.686	-13.3	19.8
##	2	X1	-1.24	0.313	-3.95	0.001	-1.89	-0.584
##	3	X2	2.68	1.94	1.38	0.182	-1.36	6.72
##	4	XЗ	3.20	0.397	8.06	0	2.37	4.02

Review: Multiple Regression Model

 In a multiple linear regression model (MLR), we express the response variable Y as a linear combination of k explanatory variables X₁, X₂,..., X_k:

 $Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k + \epsilon$

• We use the following R code to fit and summarize a linear model: mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get_regression_table(mod)

##	#	A tibble:	4 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	3.26	7.94	0.41	0.686	-13.3	19.8
##	2	X1	-1.24	0.313	-3.95	0.001	-1.89	-0.584
##	3	X2	2.68	1.94	1.38	0.182	-1.36	6.72
##	4	XЗ	3.20	0.397	8.06	0	2.37	4.02

• Which gives us our linear regression formula:

 $\hat{Y} = 3.26 - 1.24 \cdot X_1 + 2.68 \cdot X_2 + 3.2 \cdot X_3$

Review: Multiple Regression Model

 In a multiple linear regression model (MLR), we express the response variable Y as a linear combination of k explanatory variables X₁, X₂,..., X_k:

 $Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_k \cdot X_k + \epsilon$

• We use the following R code to fit and summarize a linear model: mod<-lm(Y ~ X1 + X2 + X3, data = my_data) get_regression_table(mod)

##	#	A tibble:	4 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	3.26	7.94	0.41	0.686	-13.3	19.8
##	2	X1	-1.24	0.313	-3.95	0.001	-1.89	-0.584
##	3	X2	2.68	1.94	1.38	0.182	-1.36	6.72
##	4	XЗ	3.20	0.397	8.06	0	2.37	4.02

• Which gives us our linear regression formula:

 $\hat{Y} = 3.26 - 1.24 \cdot X_1 + 2.68 \cdot X_2 + 3.2 \cdot X_3$

• The slope on each variable indicates the changed in the predicted value of Y per unit change in that variable, with all other variables held constant

Theory-Based Methods	Multiple Linear Regression	Model Assumptions for MLR	Model Selection
000	00●0000	00000	00000
Newborn Birth V	Veights		

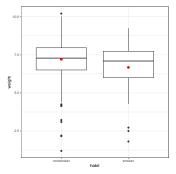
• A number of factors contribute to the birth weight of a newborn: gestational length, genetic factors, and mother's age, health, nutrition, and habits

Newborn Birth Weights

- A number of factors contribute to the birth weight of a newborn: gestational length, genetic factors, and mother's age, health, nutrition, and habits
- Researchers are interested in determining whether birth weight of babies born to mothers who smoke differs from that of babies born to mothers who do not.

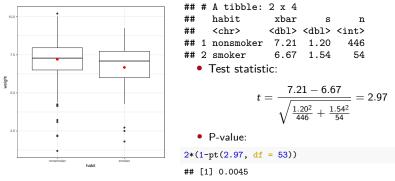
Newborn Birth Weights

- A number of factors contribute to the birth weight of a newborn: gestational length, genetic factors, and mother's age, health, nutrition, and habits
- Researchers are interested in determining whether birth weight of babies born to mothers who smoke differs from that of babies born to mothers who do not.



Newborn Birth Weights

- A number of factors contribute to the birth weight of a newborn: gestational length, genetic factors, and mother's age, health, nutrition, and habits
- Researchers are interested in determining whether birth weight of babies born to mothers who smoke differs from that of babies born to mothers who do not.



Theory-Based Methods 000	Multiple Linear Regression 000●000	Model Assumptions for MLR 00000	Model Selection

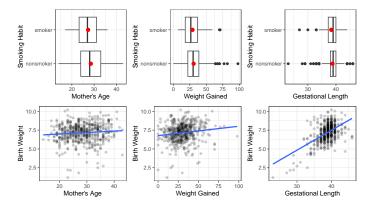
Confounding Factors

 However, smoking habits may be associated with other measures that also influence birth weight (mother's age and weight gained during pregnancy, gestational length)

Theory-Based Methods	Multiple Linear Regression	Model Assumptions for MLR	Model Selection
000	000●000	00000	

Confounding Factors

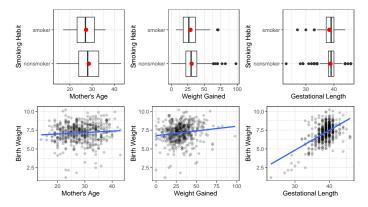
 However, smoking habits may be associated with other measures that also influence birth weight (mother's age and weight gained during pregnancy, gestational length)



Theory-Based Methods 000	Multiple Linear Regression 000●000	Model Assumptions for MLR	Model Selection

Confounding Factors

 However, smoking habits may be associated with other measures that also influence birth weight (mother's age and weight gained during pregnancy, gestational length)



• We would like to isolate the effect of smoking on birth weight, while controlling these other factors.

Theory-Based	Methods

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

```
mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)</pre>
```

##	#	A tibble: 5	x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

```
mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)</pre>
```

##	#	A tibble: 5	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

 $\mathrm{Weight} = -3.63 + 0.26 \cdot \mathrm{weeks} + 0.016 \cdot \mathrm{age} + 0.01 \cdot \mathrm{gained} - 0.387 \cdot \mathrm{smoker}$

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

```
mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)</pre>
```

##	#	A tibble: §	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

 $\mathrm{Weight} = -3.63 + 0.26 \cdot \mathrm{weeks} + 0.016 \cdot \mathrm{age} + 0.01 \cdot \mathrm{gained} - 0.387 \cdot \mathrm{smoker}$

• What is the predicted birth weight of baby born at 40 weeks to a mother of 35 years who gained 20 pounds and is a non-smoker?

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

```
mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)</pre>
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoke	r -0.387	0.151	-2.56	0.011	-0.684	-0.091

 $\mathrm{Weight} = -3.63 + 0.26 \cdot \mathrm{weeks} + 0.016 \cdot \mathrm{age} + 0.01 \cdot \mathrm{gained} - 0.387 \cdot \mathrm{smoker}$

- What is the predicted birth weight of baby born at 40 weeks to a mother of 35 years who gained 20 pounds and is a non-smoker?
- What does the coefficient on weeks mean?

Model Assumptions for MLR 00000 Model Selection

Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length, mother's age, weight gained, and smoking habit:

```
mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)</pre>
```

##	#	A tibble:	5 x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoke	r -0.387	0.151	-2.56	0.011	-0.684	-0.091

 $\mathrm{Weight} = -3.63 + 0.26 \cdot \mathrm{weeks} + 0.016 \cdot \mathrm{age} + 0.01 \cdot \mathrm{gained} - 0.387 \cdot \mathrm{smoker}$

- What is the predicted birth weight of baby born at 40 weeks to a mother of 35 years who gained 20 pounds and is a non-smoker?
- What does the coefficient on weeks mean?
- What does the coefficient on smoker mean?

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.
- Each row corresponds to a hypothesis test of the form

 $H_0: \beta_i = 0$, given that other variables are included in the model

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.
- Each row corresponds to a hypothesis test of the form

 $H_0: \beta_i = 0$, given that other variables are included in the model

• I.e. The habit_smoker row corresponds to the test of

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.
- Each row corresponds to a hypothesis test of the form

 $H_0: \beta_i = 0$, given that other variables are included in the model

• I.e. The habit_smoker row corresponds to the test of

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

• Reminder: The p-value is the probability of obtaining a statistic as extreme as the observed statistic, if the null hypothesis were true.

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.
- Each row corresponds to a hypothesis test of the form

 $H_0: \beta_i = 0$, given that other variables are included in the model

• I.e. The habit_smoker row corresponds to the test of

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

- Reminder: The p-value is the probability of obtaining a statistic as extreme as the observed statistic, **if the null hypothesis were true**.
- The standard error, statistic, and p-values are all calculated using theory-based methods.

Hypothesis Testing

- The regression table provides *p*-values for each variable in the model.
 - But what hypotheses are being tested?
- In a **MLR model**, we are still interested in determining whether a slope β_i is 0.
 - But we want to investigate this slope in light of the other variables in the model.
- Each row corresponds to a hypothesis test of the form

 $H_0: \beta_i = 0$, given that other variables are included in the model

• I.e. The habit_smoker row corresponds to the test of

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

- Reminder: The p-value is the probability of obtaining a statistic as extreme as the observed statistic, **if the null hypothesis were true**.
- The standard error, statistic, and p-values are all calculated using theory-based methods.
 - But the formula is very complicated, requiring linear algebra (If interested, take STA 336)

Model Assumptions for MLR 00000 Model Selection

Analysis

• Consider the regression table...

π	A CIDDIE. 3	X /					
	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
2	weeks	0.26	0.019	13.5	0	0.222	0.297
3	age	0.016	0.008	1.95	0.051	0	0.032
4	gained	0.01	0.003	3.03	0.003	0.004	0.017
5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091
	1 2 3 4	term	<chr> <dbl> 1 intercept -3.63 2 weeks 0.26 3 age 0.016 4 gained 0.01</dbl></chr>	term estimate std_error <chr> <dbl> 1 intercept -3.63 0.788 2 weeks 0.26 0.019 3 age 0.016 0.003 4 gained 0.01 0.003</dbl></chr>	term estimate std_error statistic <chr> <dbl></dbl> <dbl></dbl> 1 intercept -3.63 0.788 -4.61 2 weeks 0.26 0.019 13.5 3 age 0.016 0.003 1.95 4 gained 0.01 0.003 3.03</chr>	term estimate std_error statistic p_value <chr> <dbl><dbl><dbl><dbl><dbl><dbl> 1 intercept -3.63 0.788 -4.61 0 2 weeks 0.26 0.019 13.5 0 3 age 0.016 0.008 1.95 0.051 4 gained 0.01 0.003 3.03 0.003</dbl></dbl></dbl></dbl></dbl></dbl></chr>	term estimate std_error statistic p_value lower_ci <chr> <dbl><dbl><dbl><dbl><dbl><dbl><dbl><db< th=""></db<></dbl></dbl></dbl></dbl></dbl></dbl></dbl></chr>

Model Assumptions for MLR 00000 Model Selection

Analysis

• Consider the regression table...

## 3	# A tibble: 5	x 7					
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## :	l intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
## 3	2 weeks	0.26	0.019	13.5	0	0.222	0.297
## 3	3 age	0.016	0.008	1.95	0.051	0	0.032
## 4	1 gained	0.01	0.003	3.03	0.003	0.004	0.017
## !	5 habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

• Should we reject $H_0: \beta_{smoker} = 0$?

Consider the regression table...

##	#	A tibble: 5	x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

- Should we reject $H_0: \beta_{smoker} = 0$?
 - Including other variables in the model, it is unlikely we would have seen a coefficient on smoking as large as we did, if there were no relationship between smoking and birth weight.

• Consider the regression table...

##	#	A tibble: 5	x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

- Should we reject $H_0: \beta_{smoker} = 0$?
 - Including other variables in the model, it is unlikely we would have seen a coefficient on smoking as large as we did, if there were no relationship between smoking and birth weight.
 - This gives relatively strong evidence that smoking has an effect on birth weight, even after taking other factors into account.

Consider the regression table...

##	#	A tibble: 5	x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

- Should we reject H_0 : $\beta_{smoker} = 0$?
 - Including other variables in the model, it is unlikely we would have seen a coefficient on smoking as large as we did, if there were no relationship between smoking and birth weight.
 - This gives relatively strong evidence that smoking has an effect on birth weight, even after taking other factors into account.
- What does the p-value on age mean?

Consider the regression table...

##	#	A tibble: 5	x 7					
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	-3.63	0.788	-4.61	0	-5.18	-2.08
##	2	weeks	0.26	0.019	13.5	0	0.222	0.297
##	3	age	0.016	0.008	1.95	0.051	0	0.032
##	4	gained	0.01	0.003	3.03	0.003	0.004	0.017
##	5	habitsmoker	-0.387	0.151	-2.56	0.011	-0.684	-0.091

- Should we reject $H_0: \beta_{smoker} = 0$?
 - Including other variables in the model, it is unlikely we would have seen a coefficient on smoking as large as we did, if there were no relationship between smoking and birth weight.
 - This gives relatively strong evidence that smoking has an effect on birth weight, even after taking other factors into account.
- What does the p-value on age mean?
- How does the coefficient on smoker in the MLR model compare to the observed difference in our *t*-test?

 $\mathrm{weight}_\mathrm{smoker} - \mathrm{weight}_\mathrm{non\text{-}smoker} = 6.67 - 7.21 = -0.54$

Section 3

Model Assumptions for MLR

Model Assumptions: LINE

• In order to responsibly use MLR to make inference, we need...

Model Assumptions: LINE

- In order to responsibly use MLR to make inference, we need...
- The relationship between explanatory and response variables must be approximately multilinear linear. (Linear)
- **2** The observations should be independent of one another. (Independence)
- Some the distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
- The variability of residuals should be roughly constant across entire data set. (Equal Variability)

Model Assumptions: LINE

- In order to responsibly use MLR to make inference, we need...
- The relationship between explanatory and response variables must be approximately multilinear linear. (Linear)
- **2** The observations should be independent of one another. (Independence)
- O The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
- The variability of residuals should be roughly constant across entire data set. (Equal Variability)
- How do we check some of these conditions? Why can't we create a scatterplot of residuals as we did for SLR?

Model Assumptions: LINE

- In order to responsibly use MLR to make inference, we need...
- The relationship between explanatory and response variables must be approximately multilinear linear. (Linear)
- **2** The observations should be independent of one another. (Independence)
- O The distribution of residuals should be bell-shaped, unimodal, symmetric, and centered at 0. (Normal)
- The variability of residuals should be roughly constant across entire data set. (Equal Variability)
- How do we check some of these conditions? Why can't we create a scatterplot of residuals as we did for SLR?
 - Instead, we will use a scatterplot of residuals vs predicted values

Model Selection

Residuals vs Fitted Values

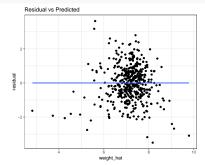
mlr_res <- get_regression_points(mlr_mod)</pre> ## # A tibble: 484 x 3 ## weight weight_hat residual <dbl> ## <dbl> <dbl> 0.633 ## 7.84 7.21 1 7.28 7.22 ## 2 0.061 ## 3 8.19 7.73 0.464 5.69 6.79 -1.10## 4 6.26 7.27 ## 5 -1.01 ## 6 6.87 7.51 -0.638 7.36 ## 7 7.93 -0.569 5.82 ## 8 6.64 -0.823 ## 9 7.25 7.47 -0.2168.19 0.705 ## 10 7.48 ## # ... with 474 more rows

Model Assumptions for MLR

Model Selection

Residuals vs Fitted Values

mlı	r_re	es <- ge	t_regression	on_points(n	nlr_mod)
##	# 1	A tibble	: 484 x 3		
##		weight	weight_hat	residual	
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	7.84	7.21	0.633	
##	2	7.28	7.22	0.061	
##	3	8.19	7.73	0.464	
##	4	5.69	6.79	-1.10	
##	5	6.26	7.27	-1.01	
##	6	6.87	7.51	-0.638	
##	7	7.36	7.93	-0.569	
##	8	5.82	6.64	-0.823	
##	9	7.25	7.47	-0.216	
##	10	8.19	7.48	0.705	
##	#	with	474 more 1	rows	

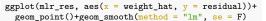


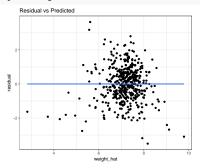
Model Assumptions for MLR

Model Selection

Residuals vs Fitted Values

mlı	r_re	s <- ge	t_regression	on_points(mlr_mod)
##	# A	tibble	: 484 x 3		
##		weight	weight_hat	residual	
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	7.84	7.21	0.633	
##	2	7.28	7.22	0.061	
##	3	8.19	7.73	0.464	
##	4	5.69	6.79	-1.10	
##	5	6.26	7.27	-1.01	
##	6	6.87	7.51	-0.638	
##	7	7.36	7.93	-0.569	
##	8	5.82	6.64	-0.823	
##	9	7.25	7.47	-0.216	
##	10	8.19	7.48	0.705	
##	#.	with	474 more 1	rows	





• When analyzing residual vs. predicted plots, look for...

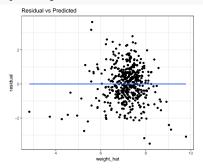
Model Assumptions for MLR

Model Selection 00000

Residuals vs Fitted Values

lr_res <- get_regression_points(mlr_mo	od)
## # A tibble: 484 x 3	
# weight weight_hat residual	
## <dbl> <dbl> <dbl></dbl></dbl></dbl>	
# 1 7.84 7.21 0.633	
# 2 7.28 7.22 0.061	
## 3 8.19 7.73 0.464	
## 4 5.69 6.79 -1.10	
# 5 6.26 7.27 -1.01	
## 6 6.87 7.51 -0.638	
t# 7 7.36 7.93 -0.569	
## 8 5.82 6.64 -0.823	
## 9 7.25 7.47 -0.216	
## 10 8.19 7.48 0.705	
## # with 474 more rows	

```
ggplot(mlr_res, aes(x = weight_hat, y = residual))+
geom_point()+geom_smooth(method = "lm", se = F)
```



- When analyzing residual vs. predicted plots, look for...
 - Non-linear patterns
 - Increasing variability across range of predicted values
 - Outliers with atypical predicted value or large residual

Model Assumptions for MLR

Model Selection

Distribution of Residuals

• We can still look at the histogram of residuals, as we did for SLR:

Theory-Based	Methods

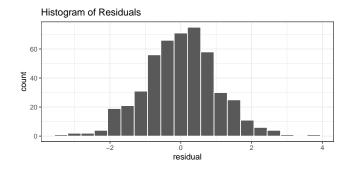
Model Assumptions for MLR

Model Selection

Distribution of Residuals

• We can still look at the histogram of residuals, as we did for SLR:

```
ggplot(mlr_res, aes(x = residual))+
geom_histogram(bins = 20, color = "white")+ labs(title = "Histogram of Residuals")
```



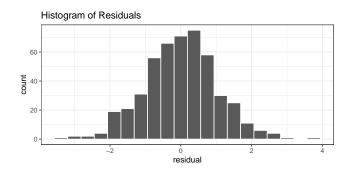
Model Assumptions for MLR

Model Selection

Distribution of Residuals

• We can still look at the histogram of residuals, as we did for SLR:

```
ggplot(mlr_res, aes(x = residual))+
geom_histogram(bins = 20, color = "white")+ labs(title = "Histogram of Residuals")
```



• Residuals do appear to be approximately Normally distributed (unimodal, bell-shaped, symmetric, centered at 0)

Model Assumptions for MLR

Conclusion

• Our data appears to reasonably satisfy the conditions for inference using multilinear regression.

- Our data appears to reasonably satisfy the conditions for inference using multilinear regression.
- Therefore, the p-values and confidence intervals obtained from theory-based methods for MLR are reasonably accurate.

- Our data appears to reasonably satisfy the conditions for inference using multilinear regression.
- Therefore, the p-values and confidence intervals obtained from theory-based methods for MLR are reasonably accurate.
- We tested

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

- Our data appears to reasonably satisfy the conditions for inference using multilinear regression.
- Therefore, the p-values and confidence intervals obtained from theory-based methods for MLR are reasonably accurate.
- We tested

 $H_0: \beta_{smoker} = 0$, given that other variables are included in the model

• We obtained a p-value of 0.011, and rejected the null hypothesis in favor of the alternative, at the 0.05 level

- Our data appears to reasonably satisfy the conditions for inference using multilinear regression.
- Therefore, the p-values and confidence intervals obtained from theory-based methods for MLR are reasonably accurate.
- We tested
 - $H_0: \beta_{smoker} = 0$, given that other variables are included in the model
 - We obtained a p-value of 0.011, and rejected the null hypothesis in favor of the alternative, at the 0.05 level
- This data does provide evidence that, even after taking other possible confounding factors into account, smoking during pregnancy is associated with lower birth weights.

- Our data appears to reasonably satisfy the conditions for inference using multilinear regression.
- Therefore, the p-values and confidence intervals obtained from theory-based methods for MLR are reasonably accurate.
- We tested
 - $H_0: \beta_{smoker} = 0$, given that other variables are included in the model
 - We obtained a p-value of 0.011, and rejected the null hypothesis in favor of the alternative, at the 0.05 level
- This data does provide evidence that, even after taking other possible confounding factors into account, smoking during pregnancy is associated with lower birth weights.
 - Moreover, in our analysis, we also observed that gestational length and weight gained had *p*-values of approximately 0, while age had a *p*-value of 0.051

Section 4

Model Assumptions for MLR 00000 Model Selection

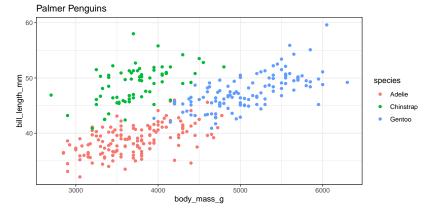
Model Selection

• How can we use *p*-values to decide which of several models is best?

- How can we use *p*-values to decide which of several models is best?
- Recall that palmerpenguins data from earlier this term:

- How can we use *p*-values to decide which of several models is best?
- Recall that palmerpenguins data from earlier this term:
- We investigated the relationship between bill length, body mass and species

- How can we use *p*-values to decide which of several models is best?
- Recall that palmerpenguins data from earlier this term:
- We investigated the relationship between bill length, body mass and species



Model Assumptions for MLR 00000 Model Selection

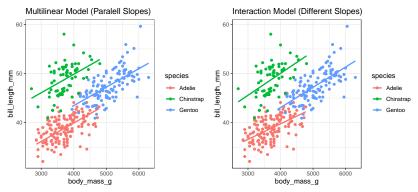
Interaction vs Multilinear Regression Model

• We had two candidates for models:

Model Assumptions for MLR 00000

Interaction vs Multilinear Regression Model

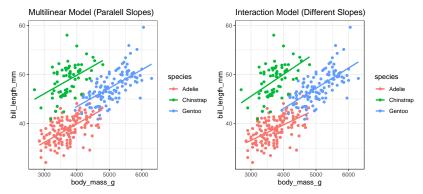
• We had two candidates for models:



Model Assumptions for MLR

Interaction vs Multilinear Regression Model

• We had two candidates for models:



• We concluded that multilinear model was superior, since both models were relatively similar, but the multilinear model was simpler

Model Selection

The Multilinear Model

```
penguins_mlr <- lm(bill_length_mm ~ body_mass_g + species, data = penguins)
get_regression_table(penguins_mlr)</pre>
```

##	#	A tibble: 4 x 7						
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	24.9	1.09	22.9	0	22.8	27.1
##	2	body_mass_g	0.004	0	13.0	0	0.003	0.004
##	3	speciesChinstrap	9.91	0.355	27.9	0	9.21	10.6
##	4	speciesGentoo	3.54	0.5	7.08	0	2.56	4.52

 $\mathrm{Bill}\ \hat{\mathrm{Length}} = 24.9 + 0.004 \cdot \mathrm{Mass} + 9.91 \cdot \mathrm{Chinstrap} + 3.54 \cdot \mathrm{Gentoo}$

.

Model Assumptions for MLR 00000 Model Selection

The Multilinear Model

```
penguins_mlr <- lm(bill_length_mm ~ body_mass_g + species, data = penguins)
get_regression_table(penguins_mlr)</pre>
```

##	#	A tibble: 4 x 7						
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	24.9	1.09	22.9	0	22.8	27.1
##	2	body_mass_g	0.004	0	13.0	0	0.003	0.004
##	З	speciesChinstrap	9.91	0.355	27.9	0	9.21	10.6
##	4	speciesGentoo	3.54	0.5	7.08	0	2.56	4.52

 $\mathrm{Bill}\ \hat{\mathrm{Length}} = 24.9 + 0.004 \cdot \mathrm{Mass} + 9.91 \cdot \mathrm{Chinstrap} + 3.54 \cdot \mathrm{Gentoo}$

• Note the p-values for all coefficients are (very close to) 0.

.

Model Assumptions for MLR 00000 Model Selection

The Multilinear Model

```
penguins_mlr <- lm(bill_length_mm ~ body_mass_g + species, data = penguins)
get_regression_table(penguins_mlr)</pre>
```

##	#	A tibble: 4 x 7						
##		term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	intercept	24.9	1.09	22.9	0	22.8	27.1
##	2	body_mass_g	0.004	0	13.0	0	0.003	0.004
##	3	speciesChinstrap	9.91	0.355	27.9	0	9.21	10.6
##	4	speciesGentoo	3.54	0.5	7.08	0	2.56	4.52

 $\mathrm{Bill}\ \hat{\mathrm{Length}} = 24.9 + 0.004 \cdot \mathrm{Mass} + 9.91 \cdot \mathrm{Chinstrap} + 3.54 \cdot \mathrm{Gentoo}$

- Note the p-values for all coefficients are (very close to) 0.
 - We would reject the null hypotheses that those slope parameters are 0 in this model.

Model Selection

The Multilinear Model

```
penguins_mlr <- lm(bill_length_mm ~ body_mass_g + species, data = penguins)
get_regression_table(penguins_mlr)</pre>
```

## #	A tibble: 4 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	24.9	1.09	22.9	0	22.8	27.1
## 2	body_mass_g	0.004	0	13.0	0	0.003	0.004
## 3	speciesChinstrap	9.91	0.355	27.9	0	9.21	10.6
## 4	speciesGentoo	3.54	0.5	7.08	0	2.56	4.52

 $\mathrm{Bill}\ \hat{\mathrm{Length}} = 24.9 + 0.004 \cdot \mathrm{Mass} + 9.91 \cdot \mathrm{Chinstrap} + 3.54 \cdot \mathrm{Gentoo}$

- Note the p-values for all coefficients are (very close to) 0.
 - We would reject the null hypotheses that those slope parameters are 0 in this model.
- This suggests that together, *body mass* and *species* do a reasonable job at predicting the value of *bill length*

Model Selection

The Interaction Model

penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)</pre>

## #	A tibble: 6 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	27.1	1.63	16.6	0	23.9	30.3
## 2	body_mass_g	0.003	0	7.23	0	0.002	0.004
## 3	speciesChinstrap	5.06	3.31	1.53	0.127	-1.45	11.6
## 4	speciesGentoo	-0.575	2.79	-0.206	0.837	-6.07	4.92
## 5	body_mass_g:speciesChi~	0.001	0.001	1.48	0.141	0	0.003
## 6	body_mass_g:speciesGen~	0.001	0.001	1.56	0.12	0	0.002

$$\begin{split} \text{Bill Length} = & 27.1 + 0.0032 \cdot \text{Mass} + 5.06 \cdot \text{Chinstrap} - 0.575 \cdot \text{Gentoo} \\ & + 0.0013 \cdot \text{Mass} \cdot \text{Chinstrap} + 0.001 \cdot \text{Mass} \cdot \text{Gentoo} \end{split}$$

The Interaction Model

penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)</pre>

## #	A tibble: 6 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	27.1	1.63	16.6	0	23.9	30.3
## 2	body_mass_g	0.003	0	7.23	0	0.002	0.004
## 3	speciesChinstrap	5.06	3.31	1.53	0.127	-1.45	11.6
## 4	speciesGentoo	-0.575	2.79	-0.206	0.837	-6.07	4.92
## 5	body_mass_g:speciesChi~	0.001	0.001	1.48	0.141	0	0.003
## 6	body_mass_g:speciesGen~	0.001	0.001	1.56	0.12	0	0.002

$$\begin{split} \text{Bill L} \hat{\text{L}} \text{ength} = & 27.1 + 0.0032 \cdot \text{Mass} + 5.06 \cdot \text{Chinstrap} - 0.575 \cdot \text{Gentoo} \\ & + 0.0013 \cdot \text{Mass} \cdot \text{Chinstrap} + 0.001 \cdot \text{Mass} \cdot \text{Gentoo} \end{split}$$

• Note now that many of the p-values are larger than 0.1

The Interaction Model

penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)</pre>

## #	A tibble: 6 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	27.1	1.63	16.6	0	23.9	30.3
## 2	body_mass_g	0.003	0	7.23	0	0.002	0.004
## 3	speciesChinstrap	5.06	3.31	1.53	0.127	-1.45	11.6
## 4	speciesGentoo	-0.575	2.79	-0.206	0.837	-6.07	4.92
## 5	body_mass_g:speciesChi~	0.001	0.001	1.48	0.141	0	0.003
## 6	body_mass_g:speciesGen~	0.001	0.001	1.56	0.12	0	0.002

$$\begin{split} \text{Bill Length} = & 27.1 + 0.0032 \cdot \text{Mass} + 5.06 \cdot \text{Chinstrap} - 0.575 \cdot \text{Gentoo} \\ & + 0.0013 \cdot \text{Mass} \cdot \text{Chinstrap} + 0.001 \cdot \text{Mass} \cdot \text{Gentoo} \end{split}$$

- Note now that many of the p-values are larger than 0.1
 - We would not reject the null hypotheses that those coefficients are 0 in this model

The Interaction Model

penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)</pre>

## #	A tibble: 6 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	27.1	1.63	16.6	0	23.9	30.3
## 2	body_mass_g	0.003	0	7.23	0	0.002	0.004
## 3	speciesChinstrap	5.06	3.31	1.53	0.127	-1.45	11.6
## 4	speciesGentoo	-0.575	2.79	-0.206	0.837	-6.07	4.92
## 5	body_mass_g:speciesChi~	0.001	0.001	1.48	0.141	0	0.003
## 6	body_mass_g:speciesGen~	0.001	0.001	1.56	0.12	0	0.002

$$\begin{split} \text{Bill Length} = & 27.1 + 0.0032 \cdot \text{Mass} + 5.06 \cdot \text{Chinstrap} - 0.575 \cdot \text{Gentoo} \\ & + 0.0013 \cdot \text{Mass} \cdot \text{Chinstrap} + 0.001 \cdot \text{Mass} \cdot \text{Gentoo} \end{split}$$

- Note now that many of the p-values are larger than 0.1
 - We would not reject the null hypotheses that those coefficients are 0 in this model
 - This sample does not provide sufficient evidence to suggest that each penguin species has its own slope for body mass.

The Interaction Model

```
penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)</pre>
```

## #	A tibble: 6 x 7						
##	term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	intercept	27.1	1.63	16.6	0	23.9	30.3
## 2	body_mass_g	0.003	0	7.23	0	0.002	0.004
## 3	speciesChinstrap	5.06	3.31	1.53	0.127	-1.45	11.6
## 4	speciesGentoo	-0.575	2.79	-0.206	0.837	-6.07	4.92
## 5	body_mass_g:speciesChi~	0.001	0.001	1.48	0.141	0	0.003
## 6	body_mass_g:speciesGen~	0.001	0.001	1.56	0.12	0	0.002

Bill Length $=27.1 + 0.0032 \cdot \text{Mass} + 5.06 \cdot \text{Chinstrap} - 0.575 \cdot \text{Gentoo} + 0.0013 \cdot \text{Mass} \cdot \text{Chinstrap} + 0.001 \cdot \text{Mass} \cdot \text{Gentoo}$

- Note now that many of the p-values are larger than 0.1
 - We would not reject the null hypotheses that those coefficients are 0 in this model
 - This sample does not provide sufficient evidence to suggest that each penguin species has its own slope for body mass.
 - It is still possible that the penguin species DO have different slopes on body mass, but our sample was not large enough to detect a potentially small difference