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Theory-Based Methods Multiple Linear Regression Model Assumptions for MLR Model Selection

Outline

In this lecture, we will. . .
• Use R to perform theory-based inference for regression models
• Review framework for multilinear regression
• Discuss inference procedures for MLR models
• Investigate tools for “Model Selection”
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Section 1

Theory-Based Methods
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Theory-Based Methods Multiple Linear Regression Model Assumptions for MLR Model Selection

Inference for Slope

• Consider the linear model Y = β0 + β1X + ϵ

• Can we make inference about the slope β1 of a linear model without using simulation?
• We need to know the standard error and shape of the sampling distribution for β̂1

• If LINE conditions are satisfied, then β̂1 is Normally distributed with standard error

SE(β̂1) =

√
1

n − 2

∑n
i=1

(yi − (β̂0 + β̂1xi ))2∑n
i=1

(xi − x̄)2
(DON’T WRITE / MEMORIZE!)

• We perform a hypothesis test of H0 : β1 = 0 using the test statistic

t =
sample stat − null value

SE(β̂1)
=

β̂1 − 0
SE(β̂1)

• And we create a confidence interval for β1 using
β̂1 ± t∗ · SE(β̂1)

• The reference distribution is the t-distribution with n − 2 degrees of freedom.
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Calculating test statistics and confidence intervals

• Can we get test statistics and confidence intervals for β1 without tedious calculation?

• Yes! Using the lm function in R.
my_mod <- lm(Y ~ X, data = my_data)
get_regression_table(my_mod)

## # A tibble: 2 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 4.86 3.17 1.53 0.137 -1.64 11.4
## 2 X 1.67 0.625 2.67 0.013 0.386 2.95

• The theory-based standard error is std_error, the test statistic is statistic, and
the corresponding p-value in the t-distribution with n-2 df is p_value.

• The upper and lower bounds for the 95% confidence interval are lower_ci and
upper_ci

• The table also gives similar information for the intercept and hypothesis test
H0 : β0 = 0 (but this is less useful in practice)
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Section 2

Multiple Linear Regression
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Review: Multiple Regression Model

• In a multiple linear regression model (MLR), we express the response variable Y as
a linear combination of k explanatory variables X1, X2, . . . , Xk :

Y = β0 + β1 · X1 + β2 · X2 + · · · + βk · Xk + ϵ

• We use the following R code to fit and summarize a linear model:
mod<-lm(Y ~ X1 + X2 + X3, data = my_data)
get_regression_table(mod)

## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 3.26 7.94 0.41 0.686 -13.3 19.8
## 2 X1 -1.24 0.313 -3.95 0.001 -1.89 -0.584
## 3 X2 2.68 1.94 1.38 0.182 -1.36 6.72
## 4 X3 3.20 0.397 8.06 0 2.37 4.02

• Which gives us our linear regression formula:

Ŷ = 3.26 − 1.24 · X1 + 2.68 · X2 + 3.2 · X3

• The slope on each variable indicates the changed in the predicted value of Y per unit
change in that variable, with all other variables held constant
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Newborn Birth Weights

• A number of factors contribute to the birth weight of a newborn: gestational length,
genetic factors, and mother’s age, health, nutrition, and habits

• Researchers are interested in determining whether birth weight of babies born to
mothers who smoke differs from that of babies born to mothers who do not.

2.5

5.0

7.5

10.0

nonsmoker smoker
habit

w
ei

gh
t

## # A tibble: 2 x 4
## habit xbar s n
## <chr> <dbl> <dbl> <int>
## 1 nonsmoker 7.21 1.20 446
## 2 smoker 6.67 1.54 54

• Test statistic:

t =
7.21 − 6.67√

1.202
446 + 1.542

54

= 2.97

• P-value:
2*(1-pt(2.97, df = 53))

## [1] 0.0045
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Confounding Factors

• However, smoking habits may be associated with other measures that also influence
birth weight (mother’s age and weight gained during pregnancy, gestational length)
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• We would like to isolate the effect of smoking on birth weight, while controlling these
other factors.
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other factors.
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Multilinear Model

We create a multilinear model for birth weight, as a function of gestational length,
mother’s age, weight gained, and smoking habit:

mlr_mod <- lm(weight ~ weeks + age + gained + habit, data = births14)
get_regression_table(mlr_mod)

## # A tibble: 5 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept -3.63 0.788 -4.61 0 -5.18 -2.08
## 2 weeks 0.26 0.019 13.5 0 0.222 0.297
## 3 age 0.016 0.008 1.95 0.051 0 0.032
## 4 gained 0.01 0.003 3.03 0.003 0.004 0.017
## 5 habitsmoker -0.387 0.151 -2.56 0.011 -0.684 -0.091

Weight = −3.63 + 0.26 · weeks + 0.016 · age + 0.01 · gained − 0.387 · smoker

• What is the predicted birth weight of baby born at 40 weeks to a mother of 35 years
who gained 20 pounds and is a non-smoker?

• What does the coefficient on weeks mean?
• What does the coefficient on smoker mean?
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Hypothesis Testing

• The regression table provides p-values for each variable in the model.
• But what hypotheses are being tested?

• In a MLR model, we are still interested in determining whether a slope βi is 0.

• But we want to investigate this slope in light of the other variables in the model.

• Each row corresponds to a hypothesis test of the form

H0 : βi = 0, given that other variables are included in the model

• I.e. The habit_smoker row corresponds to the test of

H0 : βsmoker = 0, given that other variables are included in the model

• Reminder: The p-value is the probability of obtaining a statistic as extreme as the
observed statistic, if the null hypothesis were true.

• The standard error, statistic, and p-values are all calculated using theory-based
methods.

• But the formula is very complicated, requiring linear algebra (If interested, take STA
336)
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Analysis

• Consider the regression table. . .
## # A tibble: 5 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept -3.63 0.788 -4.61 0 -5.18 -2.08
## 2 weeks 0.26 0.019 13.5 0 0.222 0.297
## 3 age 0.016 0.008 1.95 0.051 0 0.032
## 4 gained 0.01 0.003 3.03 0.003 0.004 0.017
## 5 habitsmoker -0.387 0.151 -2.56 0.011 -0.684 -0.091

• Should we reject H0 : βsmoker = 0?
• Including other variables in the model, it is unlikely we would have seen a coefficient on

smoking as large as we did, if there were no relationship between smoking and birth
weight.

• This gives relatively strong evidence that smoking has an effect on birth weight, even
after taking other factors into account.

• What does the p-value on age mean?

• How does the coefficient on smoker in the MLR model compare to the observed difference in
our t-test?

weightsmoker − weightnon-smoker = 6.67 − 7.21 = −0.54
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Section 3

Model Assumptions for MLR
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Model Assumptions: LINE

• In order to responsibly use MLR to make inference, we need. . .

1 The relationship between explanatory and response variables must be approximately
multilinear linear. (Linear)

2 The observations should be independent of one another. (Independence)

3 The distribution of residuals should be bell-shaped, unimodal, symmetric, and
centered at 0. (Normal)

4 The variability of residuals should be roughly constant across entire data set. (Equal
Variability)

• How do we check some of these conditions? Why can’t we create a scatterplot of
residuals as we did for SLR?

• Instead, we will use a scatterplot of residuals vs predicted values
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Residuals vs Fitted Values

mlr_res <- get_regression_points(mlr_mod)

## # A tibble: 484 x 3
## weight weight_hat residual
## <dbl> <dbl> <dbl>
## 1 7.84 7.21 0.633
## 2 7.28 7.22 0.061
## 3 8.19 7.73 0.464
## 4 5.69 6.79 -1.10
## 5 6.26 7.27 -1.01
## 6 6.87 7.51 -0.638
## 7 7.36 7.93 -0.569
## 8 5.82 6.64 -0.823
## 9 7.25 7.47 -0.216
## 10 8.19 7.48 0.705
## # ... with 474 more rows

ggplot(mlr_res, aes(x = weight_hat, y = residual))+
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• When analyzing residual vs. predicted plots, look for. . .
• Non-linear patterns
• Increasing variability across range of predicted values
• Outliers with atypical predicted value or large residual
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Distribution of Residuals

• We can still look at the histogram of residuals, as we did for SLR:

ggplot(mlr_res, aes(x = residual))+
geom_histogram(bins = 20, color = "white")+ labs(title = "Histogram of Residuals")
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Histogram of Residuals

• Residuals do appear to be approximately Normally distributed (unimodal, bell-shaped,
symmetric, centered at 0)
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Conclusion

• Our data appears to reasonably satisfy the conditions for inference using multilinear
regression.

• Therefore, the p-values and confidence intervals obtained from theory-based methods
for MLR are reasonably accurate.

• We tested

H0 : βsmoker = 0, given that other variables are included in the model
• We obtained a p-value of 0.011, and rejected the null hypothesis in favor of the

alternative, at the 0.05 level

• This data does provide evidence that, even after taking other possible confounding
factors into account, smoking during pregnancy is associated with lower birth weights.

• Moreover, in our analysis, we also observed that gestational length and weight gained
had p-values of approximately 0, while age had a p-value of 0.051
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Section 4

Model Selection
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Model Selection

• How can we use p-values to decide which of several models is best?

• Recall that palmerpenguins data from earlier this term:
• We investigated the relationship between bill length, body mass and species
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Interaction vs Multilinear Regression Model

• We had two candidates for models:
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• We concluded that multilinear model was superior, since both models were relatively
similar, but the multilinear model was simpler
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The Multilinear Model

penguins_mlr <- lm(bill_length_mm ~ body_mass_g + species, data = penguins)
get_regression_table(penguins_mlr)

## # A tibble: 4 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 24.9 1.09 22.9 0 22.8 27.1
## 2 body_mass_g 0.004 0 13.0 0 0.003 0.004
## 3 speciesChinstrap 9.91 0.355 27.9 0 9.21 10.6
## 4 speciesGentoo 3.54 0.5 7.08 0 2.56 4.52

ˆBill Length = 24.9 + 0.004 · Mass + 9.91 · Chinstrap + 3.54 · Gentoo

• Note the p-values for all coefficients are (very close to) 0.
• We would reject the null hypotheses that those slope parameters are 0 in this model.

• This suggests that together, body mass and species do a reasonable job at predicting
the value of bill length
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The Interaction Model
penguins_mlr <- lm(bill_length_mm ~ body_mass_g * species, data = penguins)
get_regression_table(penguins_mlr)

## # A tibble: 6 x 7
## term estimate std_error statistic p_value lower_ci upper_ci
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 intercept 27.1 1.63 16.6 0 23.9 30.3
## 2 body_mass_g 0.003 0 7.23 0 0.002 0.004
## 3 speciesChinstrap 5.06 3.31 1.53 0.127 -1.45 11.6
## 4 speciesGentoo -0.575 2.79 -0.206 0.837 -6.07 4.92
## 5 body_mass_g:speciesChi~ 0.001 0.001 1.48 0.141 0 0.003
## 6 body_mass_g:speciesGen~ 0.001 0.001 1.56 0.12 0 0.002

ˆBill Length =27.1 + 0.0032 · Mass + 5.06 · Chinstrap − 0.575 · Gentoo
+ 0.0013 · Mass · Chinstrap + 0.001 · Mass · Gentoo

• Note now that many of the p-values are larger than 0.1
• We would not reject the null hypotheses that those coefficients are 0 in this model
• This sample does not provide sufficient evidence to suggest that each penguin species

has its own slope for body mass.
• It is still possible that the penguin species DO have different slopes on body mass, but

our sample was not large enough to detect a potentially small difference
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• Note now that many of the p-values are larger than 0.1
• We would not reject the null hypotheses that those coefficients are 0 in this model
• This sample does not provide sufficient evidence to suggest that each penguin species

has its own slope for body mass.
• It is still possible that the penguin species DO have different slopes on body mass, but

our sample was not large enough to detect a potentially small difference
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