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In this lecture, we will. . .

• Discuss misinterpretations of P-values
• Utilize the infer package to create bootstrap confidence intervals and simulate the

null distribution for hypothesis testing
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(Mis)Intepreting P-Values
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The Problem with P-Values

• In the early days of statistical theory, P-values were introduced as an informal
measure to indicate whether a phenomenon warrants further investigation.

• Later, and primarily to create simple statistical manuals for untrained practitioners,
this informal measure became the unassailable rule:

“If p-value < 0.05, reject H0; If p-value > 0.05, do not reject H0”

• As a result, many academic journals used this threshold to determine whether or not a
claim is true, and therefore, publication-worthy

• Non-technical reports (i.e. news media, pop-literature, word-of-mouth) further propagate
this rule

• This editorial bias also leads to the practice of “data dredging” or “p-hacking”:
• Researchers prioritize the search for phenomenon with small p-values, at the expense of

otherwise noteworthy or important outcomes, and often eschewing other statistical and
scientific reasoning.

• This may be one cause of the Reproducibility Crisis currently faced in the fields of
Psychology and Medicine (and to some extent, other natural and social sciences)
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Guidelines for the Responsible Use of P-Values

In 2016, the American Statistical Association put forth 6 guidelines to address
misconceptions about p-values:

1 P-Values indicate how incompatible the data are with a specific statistical model.

2 P-values do not measure the probability that the null hypothesis is true; or that the data were
produced by random chance alone.

3 Scientific, business, or policy decisions should not be based only on whether a p-value is less
than a specific threshold.

4 Proper statistical inference requires full reporting and transparency

5 A p-value does not measure the size of an effect, or the importance of a result.

6 By itself, a p-value does not provide a good measure of evidence regarding a model or
hypothesis.
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P-Values and Probability

• By definition, a P-value is the probability of observing data as extreme as the data
collected if the null hypothesis were true

• P-values are one measure indicating how incompatible the data is with a specified
hypothesis (Small p-value suggests greater incompatibility)

• But p-values are NOT the probability that the null hypothesis is true.
• Consider the following hypothetical example:

• Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry
makes all 5, while I make 2.

• The null hypothesis that we have the same shot probability, while the alternative is that
Stephen Curry has higher probability.

• The p-value for this experiment (i.e. probability of a result as extreme or more) is 0.17.
• Is it reasonable to conclude that there is a 17% chance that Stephen Curry and I are

equally good shooters?
• No. We would also need to take into account our prior beliefs about the likelihood of

this hypothesis.
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(Mis)Intepreting P-Values The infer package

Effect Size and Practical Significance

• A small p-value indicates a result that is unlikely to occur due to chance, if the null
hypothesis were true.

• But the size of the p-value gives NO indication about the actual size of the effect
measured;

• Moreover, the p-value gives no indication about whether the observed difference is of
practical importance.

• A large sample is able to detect extremely minuscule differences between populations,
producing very small p-values.

• The effect size is the difference between the true value of the parameter and the null
value.

• Effect size determines whether a result is practically significant (i.e. is noteworthy or
worth changing behavior over).
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Effect Size and Practical Significance

• A recent Nature study of 19,000 people found that those who met their spouses
online. . .

• Are less likely to divorce (p−value < 0.002)
• Are more likely to have high marital satisfaction (p−value < 0.001)

• BUT! The estimated effect sizes are tiny (and perhaps not practically significant)
• Divorce rates are 5.96% for those who met online, versus 7.07% for those who met

in-person (Effect Size = 1.11)
• On a 7 point scale, happiness values were 5.64 for those who met online, versus 5.48 for

those who met in-person (Effect Size = 0.16)

• Does this provide compelling evidence that those seeking spouses should do so online?
• Are the estimated effect sizes meaningful?
• Can we deduce causal relationships from this investigation? (This is unrelated to

significance and effect size)
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those who met in-person (Effect Size = 0.16)

• Does this provide compelling evidence that those seeking spouses should do so online?
• Are the estimated effect sizes meaningful?

• Can we deduce causal relationships from this investigation? (This is unrelated to
significance and effect size)
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Conclusion

• Despite their issues, p-values are still quite popular and widely used (although are
perhaps over-used)

• The following quote, attributed to George Cobb of Mount Holyoke College,
summarizes this as:

Q: Why do so many caolleges and grad schools teach p = 0.05?
A: Because that’s what the scientific community and journal editors use.
Q: Why do the scientific community and journal editors still use p = 0.05?
A: Because that’s what they were taught in college or grad school.

• Understanding p-values and interpreting p-values in context is an important goal for
STA 209

• Determining an appropriate significance level that balances the rate of Type I and
Type II error, for your specific research question, is also an important goal for STA
209.

• Determining whether a given number is less than 0.05 is not an important goal for
STA 209
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Section 2

The infer package
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The infer Package

• The infer package makes efficient use of the %>% operator perform statistical
inference.

• The infer package makes use of several verbs-like functions:
• specify, generate, calculate, visualize, get_ci
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COVID Incubation Time

The Infectious Disease Dynamics Group at Johns Hopkins University collected data
between Dec 2019 and Jan 2020 on exposure and symptom onset for COVID-19.

The distribution of Incubation times for 64 patients is shown below:
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• What is the population of interest? What is the parameter?
• What is the sample? What is the statistic?
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specify the variables

• Every statistical investigation begins with a sample data frame (i.e. covid)

• The sample may contain many variables of interest
• We must first specify which variable(s) will be the focus of our investigation by

designating a response variable
• To investigate the infection rate

covid %>%
specify(response = Incubation)
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generate replicates

• In order to create a bootstrap distribution, we need to resample many times from the
OG sample

• After selecting variables, pipe results into the generate function to create
replicates

covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap")

• We need to indicate how many replicates we want, and what type of method we’ll use
to create them.

• For bootstrap confidence intervals, choose type = "bootstrap", and almost always
use at least reps = 2000

• The resulting data frame has a number of rows equal reps × sample_size
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calculate summary statistics

• Once we have our bootstrap samples, we need to compute the corresponding statistics

• Use the calculate function, whose first argument is stat

• Many statistics are available: "mean", "sum", "sd", "median", "prop", "diff in
mean, "correlation", "slope", and more!

covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

• After applying calculate the resulting data frame consists of one bootstrap statistic
for each replicate (saved to the variable stat)
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Sample Statistic

• Suppose you want to just calculate summary statistics of the OG sample

• By using specify and calculate (and omitting generate) we can do just that,
paralleling similar calculation for the bootstrap statistics

covid_stat<- covid %>%
specify(response = Incubation) %>%
calculate(stat = "mean")

covid_stat

## Response: Incubation (numeric)
## # A tibble: 1 x 1
## stat
## <dbl>
## 1 3.03

• Note: we saved the value of this calculation as covid_stat so we could use it later
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Save the bootstrap too

• Since we also will want to make frequent use of the bootstrap statistics, it’s worth
saving them as a variable too:

covid_boot<- covid %>%
specify(response = Incubation) %>%
generate( reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

covid_boot

## Response: Incubation (numeric)
## # A tibble: 2,000 x 2
## replicate stat
## <int> <dbl>
## 1 1 2.95
## 2 2 2.89
## 3 3 2.94
## 4 4 3.29
## 5 5 3.06
## 6 6 3.18
## 7 7 3.36
## 8 8 3.33
## 9 9 2.43
## 10 10 2.93
## # ... with 1,990 more rows
## # i Use `print(n = ...)` to see more rows
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visualize Bootstrap Distribution

• In order to perform any statistical inference, we need to ensure appropriate shape
conditions on bootstrap distribution are met

• Use the visaulize verb to quickly generate a reasonably nice-looking histogram of
the bootstrap distribution.

covid_boot %>% visualize()
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get_confidence_interval to. . . Get Confidence Interval

• To compute a confidence interval, pipe the calculated data frame into
get_confidence_interval (you can use get_ci for brevity)

• We need to specify the type of interval we want (either "percentile" or "se"),
along with the confidence level

• It’s useful to save the resulting data frame for later use
percentile_ci<-covid_boot %>%

get_ci(level = .95, type = "percentile")
percentile_ci

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 2.49 3.63

• When using the percentile type, the first value printed is the lower and the second
is the upper bound.
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Shade Confidence Intervals

• Once you’ve used get_ci to obtain endpoints of the confidence interval, you can
shade the sampling distribution with the confidence interval region.

covid_boot %>% visualize()+shade_ci(endpoints = percentile_ci)
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Hypothesis Testing in infer

• We can also use nearly identical code in the infer package to perform hypothesis
testing.

• Using the same covid data as before, let’s assess the claim that the average
incubation time µ is 3 days.

• Hypotheses:
H0 : µ = 3 Ha : µ ̸= 3

• As before, we use the specify verb to indicate the variable(s) of interest. But now,
we also encode our hypotheses:

covid %>% specify(response = Incubation) %>%
hypothesize(null = "point", mu = 3)

• In this case, our null hypothesis is the claim that the parameter is single point, and
the value of this point is mu = 3

• If we are instead comparing the means of two different population, we would instead use
null = "independence" to indicate that the mean is independent of the population
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Simulating the Null Distribution

• To simulate the distribution of statistics under the null hypothesis, we first generate
many replicates of the sample.

• To do so, we need to think about the method used to new samples.
• Since we have a single response variable which is quantitative, the only way to do so is

by bootstrapping.
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap")

• Once we’ve generated simulated samples, we compute the null statistic for each:
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

Prof. Wells The infer package STA 209, 4/5/23 22 / 25



(Mis)Intepreting P-Values The infer package

Simulating the Null Distribution

• To simulate the distribution of statistics under the null hypothesis, we first generate
many replicates of the sample.

• To do so, we need to think about the method used to new samples.
• Since we have a single response variable which is quantitative, the only way to do so is

by bootstrapping.
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap")

• Once we’ve generated simulated samples, we compute the null statistic for each:
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

Prof. Wells The infer package STA 209, 4/5/23 22 / 25



(Mis)Intepreting P-Values The infer package

Simulating the Null Distribution

• To simulate the distribution of statistics under the null hypothesis, we first generate
many replicates of the sample.

• To do so, we need to think about the method used to new samples.
• Since we have a single response variable which is quantitative, the only way to do so is

by bootstrapping.
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap")

• Once we’ve generated simulated samples, we compute the null statistic for each:
covid %>% specify(response = Incubation) %>%

hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean")

Prof. Wells The infer package STA 209, 4/5/23 22 / 25



(Mis)Intepreting P-Values The infer package

Visualize the Null Distribution

• As with confidence intervals, we plot the histogram of the resulting distribution using
visualize

covid %>% specify(response = Incubation) %>%
hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean") %>%
visualize()
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Visualize the Null Distribution

• We can also visualize the p-value using shade_p_value, in which case we also
indicate our two-sided alt. hypothesis

covid %>% specify(response = Incubation) %>%
hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean") %>%
visualize()+ shade_p_value(obs_stat = covid_stat, direction = "two-sided")
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Compute p-value

• To compute the p-value, we return to the data set of null statistics, and then use the
get_p_value function; Again, we indicate the direction of our alternative hypothesis.

covid %>% specify(response = Incubation) %>%
hypothesize(null = "point", mu = 3) %>%
generate(reps = 2000, type = "bootstrap") %>%
calculate(stat = "mean") %>%
get_p_value(obs_stat = covid_stat, direction = "two-sided")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.916

• What conclusion do we draw based on this p-value?
• If the null hypothesis were true, we would observe a statistic as extreme as this one

about 92% of the time.
• At most significance levels (α = 0.1, 0.05, 0.01), we wouldn’t reject the null hypothesis.

• BUT this does not mean we have evidence that the null hypothesis is true (only that we
failed to find evidence that it was false)
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