Hypothesis Testing II

Prof. Wells

STA 209, 4/3/23

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	0000000

Outline

In this lecture, we will...

Strength of Evidence

Decision Rules

(Mis)Intepreting P-Values

Outline

In this lecture, we will...

- Use P-values to quantify the strength of evidence against the null hypothesis
- Investigate significance level as means of making decisions
- Discuss decision errors and statistical power

Section 1

Hypothesis Testing Review

Decision Rules

(Mis)Intepreting P-Values

Framework for Hypothesis Testing

Hypothesis Testing represents a type of scientific experiment, and so should follow the general scientific method.

- **1** Present research question
- Ø Identify hypotheses
- Obtain data
- Ø Calculate relevant statistics
- 6 Compute likelihood of observing statistic under original hypothesis
- 6 Determine statistical significance and make conclusion on research question

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
00●000		0000000	0000000

Review: Coin-Flipping Hypotheses

A coin is to be flipped 8 times and the proportion of times it showed heads is recorded.

• We wish to test the claim that the coin is fair

Review: Coin-Flipping Hypotheses

A coin is to be flipped 8 times and the proportion of times it showed heads is recorded.

- We wish to test the claim that the coin is fair
- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H_a* is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.

Review: Coin-Flipping Hypotheses

A coin is to be flipped 8 times and the proportion of times it showed heads is recorded.

- We wish to test the claim that the coin is fair
- The **null hypothesis** H_0 is the claim we are testing. It often represents a skeptical perspective or that there is no relationship among several variables.
 - H_0 : The probability of heads is 50%, or p = 0.5.
- The alternative hypothesis *H*_a is contrary to the null hypothesis. It is often the theory we would like to prove.
 - H_a : The probability of heads is greater than 50%, or p > 0.5.
- The alternate hypothesis in a two-sided hypothesis test proposes that the population parameter is not equal null value. (i.e. p ≠ .5)
- The alternate hypothesis in a **one-sided hypothesis test** proposes that the population parameter is less than (or greater than) the null value (i.e. one of p > .5 or p < .5)

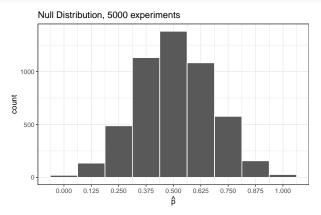
Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000●00	00000000	0000000	

Review: Hypotheses

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
0000●0	00000000	0000000	0000000

Approximating the Null Distribution

- The distribution of the statistic of interest, *if the null hypothesis were true*, is called the **Null Distribution**
- We can use R to approximate the null distribution by running 5000 experiments of 8 coin flips:


```
coin %>% rep_sample_n(size = 8, replace = T, reps = 5000) %>%
summarize(n_heads = sum(face == "Heads")) %>% mutate(p_hat = n_heads/8)
```

<pre>## replicate n_heads p_hat ## <int> <int> <dol> <int> <dol <li=""><int> <dol> <int> <dol <li=""><int> </int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int> <int> </int> <int> </int> <int> <dol <li=""><int> </int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int> < </dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></dol></int></int></pre>	##	# A	tibble: 5,	,000 x 3	3			
## 1 5 0.625 ## 2 2 5 0.625 ## 3 3 4 0.5 ## 4 4 0.5 ## 5 5 3 0.375 ## 6 6 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##		replicate r	n_heads	p_hat			
## 2 2 5 0.625 ## 3 3 4 0.5 ## 4 4 0.5 ## 5 5 3 0.375 ## 6 6 3 0.375 ## 7 7 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##		<int></int>	<int></int>	<dbl></dbl>			
## 3 4 0.5 ## 4 4 0.5 ## 5 5 3 0.375 ## 6 6 3 0.375 ## 7 7 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##	1	1	5	0.625			
## 4 4 0.5 ## 5 5 3 0.375 ## 6 6 3 0.375 ## 7 7 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##	2	2	5	0.625			
## 5 5 3 0.375 ## 6 6 3 0.375 ## 7 7 3 0.375 ## 8 2 0.25 ## 9 9 3 0.375	##	3	3	4	0.5			
## 6 6 3 0.375 ## 7 7 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##	4	4	4	0.5			
## 7 7 3 0.375 ## 8 8 2 0.25 ## 9 9 3 0.375	##	5	5	3	0.375			
## 8 8 2 0.25 ## 9 9 3 0.375	##	6	6	3	0.375			
## 9 9 3 0.375	##	7	7	3	0.375			
	##	8	8	2	0.25			
## 10 10 2 0.25	##	9	9	3	0.375			
	##	10	10	2	0.25			
## # with 4,990 more rows	##	#.	with 4,9	990 more	e rows			
<pre>## # i Use `print(n =)` to see more rows</pre>	##	# i	Use `print	(n =)` to	see	more	rows

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
00000●	00000000	0000000	

Visualizing the Null Distribution

• We can use a histogram to visualize the Null Distribution of the sample proportion \hat{p} null_stats %>% ggplot(aes(x = p_hat))+geom_histogram(bins = 9, color = "white")

Section 2

Strength of Evidence

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	0●000000	0000000	0000000
P-Values			

• The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	O●OOOOOO	0000000	0000000
P-Values			

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if *H*₀ were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	○●○○○○○○	0000000	

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if H_0 were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if H_0 were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if H_0 were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

• The p-value quantifies the strength of evidence against the Null Hypothesis. Smaller p-values represent stronger evidence to reject *H*₀.

- The **p-value** of a sample is the probability of observing a sample statistic at least as favorable to the alternative hypothesis as the current statistic, if H_0 were true.
- To distinguish between sample statistics generally and the particular one obtained from the sample, we call the latter the **test statistic**
 - In the prior experiment, we flipped a coin 8 times and obtained heads 100% of the time. The test statistic is $\hat{p} = 1.0$.
 - The p-value for this test statistic is

Probability of at least 8 heads in 8 flips $= 0.5^8 = 0.0039$

- The p-value quantifies the strength of evidence against the Null Hypothesis. Smaller p-values represent stronger evidence to reject *H*₀.
 - P-values very close to 0 represent statistics that were very unlikely to arise by chance, if the null hypothesis were true.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00●00000	0000000	0000000
Calculating P-Values			

• Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00●00000	0000000	0000000

Calculating P-Values

- Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.
 - Then calculate the proportion of simulated statistics as extreme as the test statistic.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00●00000	0000000	
Calculating P-Values			

• Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

Then calculate the proportion of simulated statistics as extreme as the test statistic.
 null_stats %>% filter(p_hat >=1.0) %>%
 summarize(n = n()) %>%
 mutate(proportion = n/5000)

```
## # A tibble: 1 x 2
```

n proportion
<int> <dbl>
1 27 0.0054

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00●00000	0000000	
Calculating P-Values			

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% filter(p_hat >=1.0) %>%
summarize(n = n()) %>%
mutate(proportion = n/5000)
```

```
## # A tibble: 1 x 2
## n proportion
## <int> <dbl>
## 1 27 0.0054
```

• Method 2: We use theory-based tools to create the theoretical null distribution.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00●00000	0000000	0000000
Calculating P-Values			

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% filter(p_hat >=1.0) %>%
summarize(n = n()) %>%
mutate(proportion = n/5000)
```

```
## # A tibble: 1 x 2
## n proportion
## <int> <dbl>
## 1 27 0.0054
```

- Method 2: We use theory-based tools to create the theoretical null distribution.
 - Then use the model to calculate the theoretical probability of observing a sample statistic as extreme as the test statistic.

Hypothesis Testing Review 000000	Strength of Evidence 00●00000	Decision Rules 0000000	(Mis)Intepreting P-Values

Calculating P-Values

 Method 1: We can approximate the null distribution using simulation, bootstrapping, and randomization.

• Then calculate the proportion of simulated statistics as extreme as the test statistic.

```
null_stats %>% filter(p_hat >=1.0) %>%
summarize(n = n()) %>%
mutate(proportion = n/5000)
```

```
## # A tibble: 1 x 2
## n proportion
## <int> <dbl>
## 1 27 0.0054
```

- Method 2: We use theory-based tools to create the theoretical null distribution.
 - Then use the model to calculate the theoretical probability of observing a sample statistic as extreme as the test statistic.
 - Assuming that coin flips heads with probability 0.5 and that each flip is independent of the others, then the probability of 8 consecutive heads is

0.5^8

[1] 0.00390625

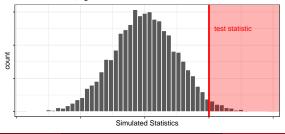
Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	0000000

• Does the specific alternative hypothesis play any role in making the null distribution?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000●0000	0000000	

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.

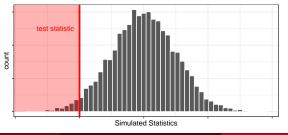
Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000●0000	0000000	


- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000●0000	0000000	0000000

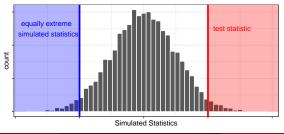
- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The direction of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000●0000	0000000	


- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The direction of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **1** If H_a is of the form parameter > null value, then the p-value is the proportion of simulated statistics greater than or equal to the test statistic (i.e. the right tail)

Null Distribution, right-tailed test

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	0000●000	0000000	0000000


- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The direction of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **2** If H_a is of the form parameter < null value, then the p-value is the proportion of simulated statistics less than or equal to the test statistic (i.e. the left tail)

Null Distribution, left-tailed test

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000●00	0000000	0000000

- Does the specific alternative hypothesis play any role in making the null distribution?
 - No. The null distribution just depends on the null hypothesis. It describes the distribution of the statistic if the null hypothesis were true.
- Does the specific alternative hypothesis play any role in calculating the p-value?
 - Yes! The direction of the alternative hypotheses determines which "tail(s)" of the null distribution correspond to *extreme* values.
- **(3)** If H_a is of the form parameter \neq null value, then the p-value is twice the proportion of simulated statistics more extreme than the test statistic (i.e. both tails)

Null Distribution, two-tailed test

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000000●0	0000000	

• Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000000●0	0000000	0000000

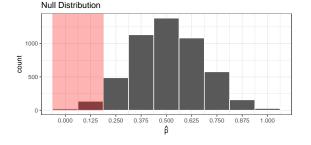
- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	000000●0	0000000	0000000

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

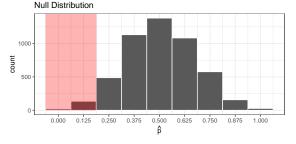

• We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	○○○○○○●○	0000000	0000000

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:



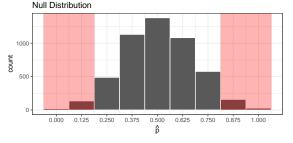
Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	○○○○○○●○	0000000	0000000

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:

We find the proportion of simulated statistics in the left tail is 0.034


Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	0000000●	0000000	0000000

A Two-Tailed Example

- Suppose we want to determine whether a coin is fair, but don't have any prior expectation that it is biased towards heads or tails.
- Our hypotheses are:

$$H_0: p = 0.5$$
 $H_a: p \neq 0.5$

- We flip the coin 8 times and obtain 1 heads, for a proportion $\hat{p} = 0.125$.
- Using the previous null-distribution, we shade values that are as extreme as our statistic:

• We double this to include the right-tail as well, and get a p-value of 0.068.

Section 3

Decision Rules

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	O●00000	0000000
Sufficient Evidence			

• How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	0000000

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	O●OOOOO	

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .
 - But what counts as "small"?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	0000000

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .
 - But what counts as "small"?
- In general, the answer depends on the field of study, as well as the stakes of the investigation.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	0000000

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .
 - But what counts as "small"?
- In general, the answer depends on the field of study, as well as the stakes of the investigation.
 - A *P*-value of 0.03 might provide compelling evidence when determining whether a coin is fair.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .
 - But what counts as "small"?
- In general, the answer depends on the field of study, as well as the stakes of the investigation.
 - A *P*-value of 0.03 might provide compelling evidence when determining whether a coin is fair.
 - But the same *p*-value of 0.03 might not provide compelling evidence when determining whether a physics experiment gives evidence of the existence of the Higgs-boson particle (where a *P*-value less than 0.000001 might be required.)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0●00000	0000000

- How do we decide what counts as *sufficient evidence* to reject the null hypothesis in favor of the alternative?
 - The p-value measures how unlikely a sample statitsic is, if the null hypothesis were true.
 - Recall that smaller *P*-values (i.e. closer to 0) provide stronger evidence against H_0 and in favor of H_a .
 - But what counts as "small"?
- In general, the answer depends on the field of study, as well as the stakes of the investigation.
 - A *P*-value of 0.03 might provide compelling evidence when determining whether a coin is fair.
 - But the same *p*-value of 0.03 might not provide compelling evidence when determining whether a physics experiment gives evidence of the existence of the Higgs-boson particle (where a *P*-value less than 0.000001 might be required.)
 - But if you are trying to determine whether pushing a crosswalk button more than once causes the stoplight to change faster, you might find a p-value of 0.25 compelling evidence.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00●0000	0000000

• The decision threshold is called the **significance level** (usually denoted as α).

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00●0000	0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00●0000	0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00●0000	0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00●0000	0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.
 - The data is statistically significant at the $\alpha = 0.10$ significance level, but is not statistically significant at the $\alpha = 0.05$ level.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000		0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.
 - The data is statistically significant at the $\alpha = 0.10$ significance level, but is not statistically significant at the $\alpha = 0.05$ level.
 - No matter whether we use a significance level of $\alpha = 0.10$ or $\alpha = 0.05$, the data provides identical strength of evidence: *P*-Value = 0.068.

Hypothesis Testing Review 000000	Strength of Evidence 00000000	Decision Rules	(Mis)Intepreting P-Values

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.
 - The data is statistically significant at the $\alpha = 0.10$ significance level, but is not statistically significant at the $\alpha = 0.05$ level.
 - No matter whether we use a significance level of $\alpha = 0.10$ or $\alpha = 0.05$, the data provides identical strength of evidence: *P*-Value = 0.068.
 - But whether we consider this "strong enough" depends on whether we are using $\alpha = 0.10$ or $\alpha = 0.05$.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000		0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.
 - The data is statistically significant at the $\alpha = 0.10$ significance level, but is not statistically significant at the $\alpha = 0.05$ level.
 - No matter whether we use a significance level of $\alpha = 0.10$ or $\alpha = 0.05$, the data provides identical strength of evidence: *P*-Value = 0.068.
 - But whether we consider this "strong enough" depends on whether we are using $\alpha = 0.10$ or $\alpha = 0.05$.
- In general, we should **always** choose the value of α prior to conducting an experiment and observing data.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000		0000000

- The decision threshold is called the **significance level** (usually denoted as α).
- If the P-Value is less than the prescribed significance level α, we say the data is statistically significant (or statistically discernible) at the level α.
 - In this case, the sample provides compelling evidence to reject H_0 in favor of H_a .
- In the coin flip experiment, if we observe 1 out of 8 heads, our *P*-value is 0.068 using a 2-sided alternative hypothesis.
 - The data is statistically significant at the $\alpha = 0.10$ significance level, but is not statistically significant at the $\alpha = 0.05$ level.
 - No matter whether we use a significance level of $\alpha = 0.10$ or $\alpha = 0.05$, the data provides identical strength of evidence: *P*-Value = 0.068.
 - But whether we consider this "strong enough" depends on whether we are using $\alpha = 0.10$ or $\alpha = 0.05$.
- In general, we should **always** choose the value of α prior to conducting an experiment and observing data.
 - Otherwise, we are liable to choose a significance level that conforms to whichever decision we would prefer to make.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	0000000
Types of Errors			

• Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	0000000
Types of Errors			

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.

Hypothesis Testing Review 000000	Strength of Evidence 00000000	Decision Rules 000€000	(Mis)Intepreting P-Values

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	0000000

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion				
		do not reject H_0 reject H_0 in favor of H_A				
	H_0 true	Correct Decision	Type 1 Error			
Truth	H_A true	Type 2 Error	Correct Decision			

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion			
		do not reject H_0 reject H_0 in favor of H_A			
Truth	H_0 true	Correct Decision	Type 1 Error		
	<i>H</i> _A true	Type 2 Error	Correct Decision		

• A Type 1 Error occurs when we reject H_0 when it is actually true.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000●000	

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion				
		do not reject H_0 reject H_0 in favor of H_A				
Truth	H_0 true	Correct Decision	Type 1 Error			
	H_A true	Type 2 Error	Correct Decision			

- A Type 1 Error occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion				
		do not reject H_0 reject H_0 in favor of H_A				
Truth	H_0 true	Correct Decision	Type 1 Error			
	<i>H</i> _A true	Type 2 Error	Correct Decision			

- A Type 1 Error occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.
- A **Type 2 Error** occurs when we fail to reject H_0 when it is in fact false.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion				
		do not reject H_0 reject H_0 in favor of H_A				
Truth	H_0 true	Correct Decision	Type 1 Error			
	H _A true	Type 2 Error	Correct Decision			

- A Type 1 Error occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.
- A Type 2 Error occurs when we fail to reject H₀ when it is in fact false.
 The coin was indeed biased. But we withheld judgment since unlikely events do happen from time to time

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000€000	

- Hypothesis Tests give framework for comparing uncertainty, but do not guarantee that our conclusion will never be in err.
 - Remember: Unlikely things happen. All of the time.
- There are four possible outcomes to a hypothesis test, summarized below:

		Test conclusion				
		do not reject H_0 reject H_0 in favor of H_A				
Truth	H_0 true	Correct Decision	Type 1 Error			
	H _A true	Type 2 Error	Correct Decision			

- A Type 1 Error occurs when we reject H_0 when it is actually true.
 - The coin is actually fair. But we saw an unlikely event and claimed the coin was biased.
- A Type 2 Error occurs when we fail to reject H₀ when it is in fact false.
 The coin was indeed biased. But we withheld judgment since unlikely events do happen from time to time.
- In general, we will never know we made an error at all (but we can still quantify the probability that we made a particular error)

Hypothesis Testing Review 000000	Strength of Evidence	Decision Rules 0000●00	(Mis)Intepreting P-Values

• The significance level of a hypothesis test corresponds to our willingness to make Type I errors.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000●00	

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000●00	

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject H_0 , and so usually increases the chance of making a Type 2 error.

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject H_0 , and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject H_0 , and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

Hypothesis Testing Review 000000	Strength of Evidence	Decision Rules 0000●00	(Mis)Intepreting P-Values

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

With great power comes...

Hypothesis Testing Review 000000	Strength of Evidence	Decision Rules 0000●00	(Mis)Intepreting P-Values

- The significance level of a hypothesis test corresponds to our willingness to make Type I errors.
- Decreasing the significance level decreases the number of Type I errors made across a large number of experiments.
- Is there a cost to decreasing significance level to ensure we do not make Type I errors?
 - Yes! Because decreasing the significance level also makes it less likely we will reject *H*₀, and so usually increases the chance of making a Type 2 error.
- The **power** of a statistical test is the probability of correctly rejecting the null hypothesis when it is false. That is

Power = 1 - Probability of Type II Error

• In general, computing power can be difficult, and requires we investigate the distribution of a sample statistic under the alternative hypothesis.

With great power comes...greater chance of Type I error.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	00000€0	

A quick and accessible (but unreliable) test for COVID-19 is to match a patient's symptoms to the 10 most common symptoms exhibited by victims of COVID.

Suppose a person walks into a medical clinic with 6 of the 10 symptoms of COVID, and medical personnel are concerned the person may have COVID.

• What are informal statements of the Null and Alternate Hypotheses?

A quick and accessible (but unreliable) test for COVID-19 is to match a patient's symptoms to the 10 most common symptoms exhibited by victims of COVID.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to assess whether the person has COVID?

A quick and accessible (but unreliable) test for COVID-19 is to match a patient's symptoms to the 10 most common symptoms exhibited by victims of COVID.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to assess whether the person has COVID?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?

A quick and accessible (but unreliable) test for COVID-19 is to match a patient's symptoms to the 10 most common symptoms exhibited by victims of COVID.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to assess whether the person has COVID?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?
- Ø Similarly, what does a Type II error represent? What are some possible consequences of a Type II error?

A quick and accessible (but unreliable) test for COVID-19 is to match a patient's symptoms to the 10 most common symptoms exhibited by victims of COVID.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to assess whether the person has COVID?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?
- Ø Similarly, what does a Type II error represent? What are some possible consequences of a Type II error?
- What significance level are you willing to use for this COVID test? *Remember, decreasing significance level also decreases the power of the test.*

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000000●	0000000
DNA Tests			

DNA testing allows researchers to compare the DNA profile of a suspect to the profile of DNA at the crime scene. Suppose that the perpetrator's DNA profile will **always** match profile of the DNA found at the crime scene. However, there is a small chance that profile of an innocent person matches the crime scene DNA profile, as well.

Suppose a person is on trial for a crime. Forensic scientists attest that the person's DNA profile matches the crime scene DNA profile.

1 What are informal statements of the Null and Alternate Hypotheses?

Hypothesis Testing Review 000000	Strength of Evidence 00000000	Decision Rules 000000●	(Mis)Intepreting P-Values

DNA testing allows researchers to compare the DNA profile of a suspect to the profile of DNA at the crime scene. Suppose that the perpetrator's DNA profile will **always** match profile of the DNA found at the crime scene. However, there is a small chance that profile of an innocent person matches the crime scene DNA profile, as well.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to determine whether the person has committed the crime?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000000●	

DNA testing allows researchers to compare the DNA profile of a suspect to the profile of DNA at the crime scene. Suppose that the perpetrator's DNA profile will **always** match profile of the DNA found at the crime scene. However, there is a small chance that profile of an innocent person matches the crime scene DNA profile, as well.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to determine whether the person has committed the crime?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000000●	0000000

DNA testing allows researchers to compare the DNA profile of a suspect to the profile of DNA at the crime scene. Suppose that the perpetrator's DNA profile will **always** match profile of the DNA found at the crime scene. However, there is a small chance that profile of an innocent person matches the crime scene DNA profile, as well.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to determine whether the person has committed the crime?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?
- Ø Similarly, what does a Type II error represent? What are some possible consequences of a Type II error?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	000000●	0000000

DNA testing allows researchers to compare the DNA profile of a suspect to the profile of DNA at the crime scene. Suppose that the perpetrator's DNA profile will **always** match profile of the DNA found at the crime scene. However, there is a small chance that profile of an innocent person matches the crime scene DNA profile, as well.

- What are informal statements of the Null and Alternate Hypotheses?
- What 'statistic' is being used to determine whether the person has committed the crime?
- In the context of this problem, what does a Type I error represent? What are some possible consequences of a Type I error?
- Similarly, what does a Type II error represent? What are some possible consequences of a Type II error?
- What significance level are you willing to use for this DNA test? Remember, decreasing significance level also decreases the power of the test.

Section 4

(Mis)Intepreting P-Values

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	○●○○○○○

• In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	○●○○○○○

- In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.
- Later, and primarily to create simple statistical manuals for untrained practitioners, this informal measure became the unassailable rule:

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	○●○○○○○

- In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.
- Later, and primarily to create simple statistical manuals for untrained practitioners, this informal measure became the unassailable rule:

"If p-value < 0.05, reject H_0 ; If p-value > 0.05, do not reject H_0 "

• As a result, many academic journals used this threshold to determine whether or not a claim is true, and therefore, publication-worthy

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	○●○○○○○

- In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.
- Later, and primarily to create simple statistical manuals for untrained practitioners, this informal measure became the unassailable rule:

- As a result, many academic journals used this threshold to determine whether or not a claim is true, and therefore, publication-worthy
 - Non-technical reports (i.e. news media, pop-literature, word-of-mouth) further propagate this rule

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	○●○○○○○

- In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.
- Later, and primarily to create simple statistical manuals for untrained practitioners, this informal measure became the unassailable rule:

- As a result, many academic journals used this threshold to determine whether or not a claim is true, and therefore, publication-worthy
 - Non-technical reports (i.e. news media, pop-literature, word-of-mouth) further propagate this rule
- This editorial bias also leads to the practice of "data dredging" or "p-hacking":
 - Researchers prioritize the search for phenomenon with small p-values, at the expense of
 otherwise noteworthy or important outcomes, and often eschewing other statistical and
 scientific reasoning.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	○●○○○○○

- In the early days of statistical theory, *P*-values were introduced as an *informal* measure to indicate whether a phenomenon warrants further investigation.
- Later, and primarily to create simple statistical manuals for untrained practitioners, this informal measure became the unassailable rule:

- As a result, many academic journals used this threshold to determine whether or not a claim is true, and therefore, publication-worthy
 - Non-technical reports (i.e. news media, pop-literature, word-of-mouth) further propagate this rule
- This editorial bias also leads to the practice of "data dredging" or "p-hacking":
 - Researchers prioritize the search for phenomenon with small p-values, at the expense of
 otherwise noteworthy or important outcomes, and often eschewing other statistical and
 scientific reasoning.
- This may be one cause of the *Reproducibility Crisis* currently faced in the fields of Psychology and Medicine (and to some extent, other natural and social sciences)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	00€0000

In 2016, the American Statistical Association put forth 6 guidelines to address misconceptions about p-values:

1 P-Values indicate how incompatible the data are with a specific statistical model.

- **1** P-Values indicate how incompatible the data are with a specific statistical model.
- P-values do not measure the probability that the null hypothesis is true; or that the data were produced by random chance alone.

- **1** P-Values indicate how incompatible the data are with a specific statistical model.
- P-values do not measure the probability that the null hypothesis is true; or that the data were produced by random chance alone.
- Scientific, business, or policy decisions should not be based only on whether a p-value is less than a specific threshold.

- **1** P-Values indicate how incompatible the data are with a specific statistical model.
- P-values do not measure the probability that the null hypothesis is true; or that the data were produced by random chance alone.
- Scientific, business, or policy decisions should not be based only on whether a p-value is less than a specific threshold.
- **4** Proper statistical inference requires full reporting and transparency

- **1** P-Values indicate how incompatible the data are with a specific statistical model.
- P-values do not measure the probability that the null hypothesis is true; or that the data were produced by random chance alone.
- Scientific, business, or policy decisions should not be based only on whether a p-value is less than a specific threshold.
- **4** Proper statistical inference requires full reporting and transparency
- **6** A p-value does not measure the size of an effect, or the importance of a result.

- **1** P-Values indicate how incompatible the data are with a specific statistical model.
- P-values do not measure the probability that the null hypothesis is true; or that the data were produced by random chance alone.
- Scientific, business, or policy decisions should not be based only on whether a p-value is less than a specific threshold.
- **4** Proper statistical inference requires full reporting and transparency
- **6** A p-value does not measure the size of an effect, or the importance of a result.
- **(b)** By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	000●000

• By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small p-value suggests greater incompatibility)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.
- Consider the following *hypothetical* example:
 - Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry makes all 5, while I make 2.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.
- Consider the following *hypothetical* example:
 - Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry makes all 5, while I make 2.
 - The null hypothesis that we have the same shot probability, while the alternative is that Stephen Curry has higher probability.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.
- Consider the following *hypothetical* example:
 - Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry makes all 5, while I make 2.
 - The null hypothesis that we have the same shot probability, while the alternative is that Stephen Curry has higher probability.
 - The p-value for this experiment (i.e. probability of a result as extreme or more) is 0.17.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.
- Consider the following *hypothetical* example:
 - Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry makes all 5, while I make 2.
 - The null hypothesis that we have the same shot probability, while the alternative is that Stephen Curry has higher probability.
 - The p-value for this experiment (i.e. probability of a result as extreme or more) is 0.17.
 - Is it reasonable to conclude that there is a 17% chance that Stephen Curry and I are equally good shooters?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000●000

- By definition, a P-value is the probability of observing data as extreme as the data collected **if the null hypothesis were true**
 - P-values are one measure indicating how incompatible the data is with a specified hypothesis (Small *p*-value suggests greater incompatibility)
- But p-values are **NOT** the probability that the null hypothesis is true.
- Consider the following *hypothetical* example:
 - Pro basketball player Stephen Curry and I each take five 3-point shots. Stephen Curry makes all 5, while I make 2.
 - The null hypothesis that we have the same shot probability, while the alternative is that Stephen Curry has higher probability.
 - The p-value for this experiment (i.e. probability of a result as extreme or more) is 0.17.
 - Is it reasonable to conclude that there is a 17% chance that Stephen Curry and I are equally good shooters?
 - No. We would also need to take into account our prior beliefs about the likelihood of this hypothesis.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	0000€00

• A small *p*-value indicates a result that is unlikely to occur due to chance, if the null hypothesis were true.

- A small *p*-value indicates a result that is unlikely to occur due to chance, if the null hypothesis were true.
 - But the size of the p-value gives NO indication about the actual size of the effect measured;
 - Moreover, the p-value gives no indication about whether the observed difference is of practical importance.

- A small *p*-value indicates a result that is unlikely to occur due to chance, if the null hypothesis were true.
 - But the size of the p-value gives NO indication about the actual size of the effect measured;
 - Moreover, the p-value gives no indication about whether the observed difference is of practical importance.
 - A large sample is able to detect extremely minuscule differences between populations, producing very small p-values.

- A small *p*-value indicates a result that is unlikely to occur due to chance, if the null hypothesis were true.
 - But the size of the p-value gives NO indication about the actual size of the effect measured;
 - Moreover, the p-value gives no indication about whether the observed difference is of practical importance.
 - A large sample is able to detect extremely minuscule differences between populations, producing very small *p*-values.
- The effect size is the difference between the true value of the parameter and the null value.

- A small *p*-value indicates a result that is unlikely to occur due to chance, if the null hypothesis were true.
 - But the size of the p-value gives NO indication about the actual size of the effect measured;
 - Moreover, the p-value gives no indication about whether the observed difference is of practical importance.
 - A large sample is able to detect extremely minuscule differences between populations, producing very small p-values.
- The effect size is the difference between the true value of the parameter and the null value.
 - Effect size determines whether a result is *practically significant* (i.e. is noteworthy or worth changing behavior over).

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	00000●0

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (p-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	0000000

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (p-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	00000●0

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (*p*-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)
 - Divorce rates are 5.96% for those who met online, versus 7.07% for those who met in-person (Effect Size = 1.11)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	00000●0

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (*p*-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)
 - Divorce rates are 5.96% for those who met online, versus 7.07% for those who met in-person (Effect Size = 1.11)
 - On a 7 point scale, happiness values were 5.64 for those who met online, versus 5.48 for those who met in-person (Effect Size = 0.16)

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	00000●0

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (p-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)
 - Divorce rates are 5.96% for those who met online, versus 7.07% for those who met in-person (Effect Size = 1.11)
 - On a 7 point scale, happiness values were 5.64 for those who met online, versus 5.48 for those who met in-person (Effect Size = 0.16)
- Does this provide compelling evidence that those seeking spouses should do so online?

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	00000●0

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (*p*-value < 0.002)
 - Are more likely to have high marital satisfaction (*p*-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)
 - Divorce rates are 5.96% for those who met online, versus 7.07% for those who met in-person (Effect Size = 1.11)
 - On a 7 point scale, happiness values were 5.64 for those who met online, versus 5.48 for those who met in-person (Effect Size = 0.16)
- Does this provide compelling evidence that those seeking spouses should do so online?
 - Are the estimated effect sizes meaningful?

- A recent *Nature* study of 19,000 people found that those who met their spouses online...
 - Are less likely to divorce (p-value < 0.002)
 - Are more likely to have high marital satisfaction (p-value < 0.001)
- BUT! The estimated *effect sizes* are tiny (and perhaps not practically significant)
 - Divorce rates are 5.96% for those who met online, versus 7.07% for those who met in-person (Effect Size = 1.11)
 - On a 7 point scale, happiness values were 5.64 for those who met online, versus 5.48 for those who met in-person (Effect Size = 0.16)
- Does this provide compelling evidence that those seeking spouses should do so online?
 - Are the estimated effect sizes meaningful?
 - Can we deduce causal relationships from this investigation? (This is unrelated to significance and effect size)

Hypothesis Testing Review 000000	Strength of Evidence 00000000	Decision Rules 0000000	(Mis)Intepreting P-Values 000000●
Conclusion			

• Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)

Hypothesis Testing Review 000000	Strength of Evidence 00000000	Decision Rules 0000000	(Mis)Intepreting P-Values 000000●

- Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)
- The following quote, attributed to George Cobb of Mount Holyoke College, summarizes this as:

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000000●

- Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)
- The following quote, attributed to George Cobb of Mount Holyoke College, summarizes this as:
 - *Q*: Why do so many calleges and grad schools teach p = 0.05?
 - A: Because that's what the scientific community and journal editors use.
 - *Q*: Why do the scientific community and journal editors still use p = 0.05?
 - A: Because that's what they were taught in college or grad school.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000000●

- Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)
- The following quote, attributed to George Cobb of Mount Holyoke College, summarizes this as:

Q: Why do so many caolleges and grad schools teach p = 0.05? A: Because that's what the scientific community and journal editors use. Q: Why do the scientific community and journal editors still use p = 0.05? A: Because that's what they were taught in college or grad school.

• Understanding p-values and interpreting p-values in context is an important goal for STA 209

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000	00000000	0000000	000000●

- Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)
- The following quote, attributed to George Cobb of Mount Holyoke College, summarizes this as:
 - Q: Why do so many calleges and grad schools teach p = 0.05? A: Because that's what the scientific community and journal editors use. Q: Why do the scientific community and journal editors still use p = 0.05? A: Because that's what they were taught in college or grad school.
- Understanding p-values and interpreting p-values in context is an important goal for STA 209
- Determining an appropriate significance level that balances the rate of Type I and Type II error, for your specific research question, is also an important goal for STA 209.

Hypothesis Testing Review	Strength of Evidence	Decision Rules	(Mis)Intepreting P-Values
000000		0000000	000000●

- Despite their issues, p-values are still quite popular and widely used (although are perhaps over-used)
- The following quote, attributed to George Cobb of Mount Holyoke College, summarizes this as:
 - Q: Why do so many calleges and grad schools teach p = 0.05? A: Because that's what the scientific community and journal editors use. Q: Why do the scientific community and journal editors still use p = 0.05? A: Because that's what they were taught in college or grad school.
- Understanding p-values and interpreting p-values in context is an important goal for STA 209
- Determining an appropriate significance level that balances the rate of Type I and Type II error, for your specific research question, is also an important goal for STA 209.
- Determining whether a given number is less than 0.05 is not an important goal for STA 209