Inference for Difference in 2 Means

Prof. Wells

STA 209, 4/28/23

Prof. Wells

Inference for Difference in 2 Means

STA 209, 4/28/23

1/23

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Investigate the theoretical distribution for difference in two means.
- Create confidence intervals and perform hypothesis tests using *t* distribution for differences in means.
- Compare inference procedures for two independent samples vs. paired samples

Section 1

Inference for 2 Means

Inference for Paired Samples 00000

Differences in Means

• Consider the following questions:

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?
 - Does daily consumption of coffee improve performance on a standardized test compared to a control?

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?
 - Does daily consumption of coffee improve performance on a standardized test compared to a control?
 - Is there an appreciable difference in price between .99 and 1.0 carat diamonds?

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?
 - Does daily consumption of coffee improve performance on a standardized test compared to a control?
 - Is there an appreciable difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two populations.

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?
 - Does daily consumption of coffee improve performance on a standardized test compared to a control?
 - Is there an appreciable difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two populations.
- Groups could be formed from...

- Consider the following questions:
 - Are variations in house prices in two different towns in the same state just due to sampling variability, or do they suggest an underlying difference?
 - Does daily consumption of coffee improve performance on a standardized test compared to a control?
 - Is there an appreciable difference in price between .99 and 1.0 carat diamonds?
- Each of these questions can be answered by analyzing the difference in means between samples taken from two populations.
- Groups could be formed from...
 - Two different populations.
 - Two subsets within the same sample distinguished by levels of a categorical variable.
 - Two treatment groups in an experiment.

• Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.

- Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.
- **Goal**: Estimate the value of the parameter $\mu_1 \mu_2$ using the statistic $\bar{x}_1 \bar{x}_2$.

- Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.
- Goal: Estimate the value of the parameter $\mu_1 \mu_2$ using the statistic $\bar{x}_1 \bar{x}_2$.
 - We need to know the shape, center, and spread of distribution of $\bar{x}_1 \bar{x}_2$.

- Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.
- **Goal**: Estimate the value of the parameter $\mu_1 \mu_2$ using the statistic $\bar{x}_1 \bar{x}_2$.
 - We need to know the shape, center, and spread of distribution of $\bar{x}_1 \bar{x}_2$.
- By CLT, the distributions of \bar{x}_1 and \bar{x}_2 are approximately Normal.

- Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.
- **Goal**: Estimate the value of the parameter $\mu_1 \mu_2$ using the statistic $\bar{x}_1 \bar{x}_2$.
 - We need to know the shape, center, and spread of distribution of $\bar{x}_1 \bar{x}_2$.
- By CLT, the distributions of \bar{x}_1 and \bar{x}_2 are approximately Normal.

Sampling Distribution of Sample Means

- Suppose random samples of size n_1 and n_2 are drawn **independently** from populations with means μ_1 and μ_2 and standard deviations σ_1 and σ_2 , respectively.
- **Goal**: Estimate the value of the parameter $\mu_1 \mu_2$ using the statistic $\bar{x}_1 \bar{x}_2$.
 - We need to know the shape, center, and spread of distribution of $\bar{x}_1 \bar{x}_2$.
- The distribution of the difference $\bar{x}_1 \bar{x}_2$ is approximately Normal also

Inference for 2 Means 0000●00000	Hypothesis Testing 000000	Inference for Paired Samples

• By the Central Limit Theorem, as both n_1 and n_2 get larger, the distribution of difference in sample means $\bar{x}_1 - \bar{x}_2$ becomes *more* Normally distributed, with mean

$$\mu_1-\mu_2$$
 and standard error $SE=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$

Inference for 2 Means 0000●00000	Hypothesis Testing 000000	Inference for Paired Samples

 By the Central Limit Theorem, as both n₁ and n₂ get larger, the distribution of difference in sample means x
₁ - x
₂ becomes more Normally distributed, with mean

$$\mu_1-\mu_2$$
 and standard error $SE=\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$

• The SE of the difference in means is larger than the SE for either mean.

Inference for 2 Means 0000000000	Hypothesis Testing 000000	Inference for Paired Samples

 By the Central Limit Theorem, as both n₁ and n₂ get larger, the distribution of difference in sample means x
₁ - x
₂ becomes more Normally distributed, with mean

$$\mu_1 - \mu_2$$
 and standard error $SE = \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$

- The SE of the difference in means is larger than the SE for either mean.
- In practice, we estimate the parameters σ_1 and σ_2 with the sample statistics s_1 and s_2

• By the Central Limit Theorem, as both n_1 and n_2 get larger, the distribution of difference in sample means $\bar{x}_1 - \bar{x}_2$ becomes *more* Normally distributed, with mean

$$\mu_1 - \mu_2$$
 and standard error $SE = \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$

- The SE of the difference in means is larger than the SE for either mean.
- In practice, we estimate the parameters σ_1 and σ_2 with the sample statistics s_1 and s_2
- Consider the standardized difference in sample means:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\text{SE}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• By the Central Limit Theorem, as both n_1 and n_2 get larger, the distribution of difference in sample means $\bar{x}_1 - \bar{x}_2$ becomes more Normally distributed, with mean

$$\mu_1 - \mu_2$$
 and standard error $SE = \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$

- The SE of the difference in means is larger than the SE for either mean.
- In practice, we estimate the parameters σ_1 and σ_2 with the sample statistics s_1 and s_2
- Consider the standardized difference in sample means:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\text{SE}} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Theorem

The standardized difference t is approximately t-distributed with degrees of freedom $df = \min\{n_1 - 1, n_2 - 1\}.$

This approximation is appropriate either when both sample sizes are large (i.e. $n_1, n_2 \ge 30$), or when both populations are approximately Normally distributed.

Prof. Wells

Inference for Difference in 2 Means

Question: Do 1.0 carat diamonds command a higher price than .99 carat diamonds, beyond what you would expect due to increase in weight?

• To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
 - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
 - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
 - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics

- To answer, we collect random samples of 30 1.0 and 23 .99 carat diamonds.
 - To decouple the effect of increase in size between the two groups, we divide price of the .99 carat diamonds by .99 to obtain price per carat ppc
- Here are side-by-side boxplots of the diamonds, along with summary statistics

Inference for 2 Means 000000●000	Hypothesis Testing 000000	Inference for Paired Samples
Normal Conditions		

• Our sample sizes are near the minimum conditions to use the Normal approximation. Are ppc Normally distributed for each carat value?

Distribution of ppc in each sample

Inference for 2 Means 000000●000	Hypothesis Testing 000000	Inference for Paired Samples
Normal Conditions		

• Our sample sizes are near the minimum conditions to use the Normal approximation. Are ppc Normally distributed for each carat value?

• The data does not appear to closely follow a Normal distribution (especially for .99 carat diamonds); use theory-based methods with caution!

Estimating Difference

Goal: Create a 90% confidence interval to estimate difference in mean ppc $\mu_1 - \mu_{99}$ for 1.0 and .99 carat diamonds.

Estimating Difference

Goal: Create a 90% confidence interval to estimate difference in mean ppc $\mu_1-\mu_{99}$ for 1.0 and .99 carat diamonds.

• The formula for our confidence interval is

statistic $\pm \; t^* \cdot SE$

Estimating Difference

Goal: Create a 90% confidence interval to estimate difference in mean ppc $\mu_1 - \mu_{99}$ for 1.0 and .99 carat diamonds.

• The formula for our confidence interval is

statistic
$$\pm t^* \cdot SE$$

• To obtain the critical value t^* for 90% confidence, use *t*-distributed with 22 degrees of freedom: df = min(23 - 1, 30 - 1) = 22

qt(.95, df = 22)

[1] 1.717144

Confidence Interval

• Our statistic of interest is

$$\bar{x}_1 - \bar{x}_{99} = 5366 - 4450 = 916$$

Confidence Interval

• Our statistic of interest is

$$\bar{x}_1 - \bar{x}_{99} = 5366 - 4450 = 916$$

• Our standard error is

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_{99}^2}{n_{99}}} = \sqrt{\frac{1478^2}{30} + \frac{1332^2}{23}} = 387.24$$

Confidence Interval

• Our statistic of interest is

$$\bar{x}_1 - \bar{x}_{99} = 5366 - 4450 = 916$$

• Our standard error is

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_{99}^2}{n_{99}}} = \sqrt{\frac{1478^2}{30} + \frac{1332^2}{23}} = 387.24$$

• The formula for our confidence interval is

$$(ar{x}_1 - ar{x}_{99}) \pm t^* \cdot SE$$

Confidence Interval

• Our statistic of interest is

$$\bar{x}_1 - \bar{x}_{99} = 5366 - 4450 = 916$$

• Our standard error is

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_{99}^2}{n_{99}}} = \sqrt{\frac{1478^2}{30} + \frac{1332^2}{23}} = 387.24$$

• The formula for our confidence interval is

$$(ar{x}_1 - ar{x}_{99}) \pm t^* \cdot SE$$

• Our interval is therefore

 $916 \pm 1.717 \cdot 387.24$ or (250, 1580)
Confidence Interval

• Our statistic of interest is

$$\bar{x}_1 - \bar{x}_{99} = 5366 - 4450 = 916$$

• Our standard error is

$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_{99}^2}{n_{99}}} = \sqrt{\frac{1478^2}{30} + \frac{1332^2}{23}} = 387.24$$

• The formula for our confidence interval is

$$(\bar{x}_1 - \bar{x}_{99}) \pm t^* \cdot SE$$

• Our interval is therefore

 $916 \pm 1.717 \cdot 387.24$ or (250, 1580)

- Since this interval **does not** contain 0, it is plausible (at 90% confidence) that there is a price increase for 1.0 carat diamonds.
 - Moreover, this price increase is likely between \$250 and \$1580.

Inference for Paired Samples 00000

Comparison with infer

```
dd %>% specify(ppc ~ carat) %>%
generate(reps = 10000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("1", "0.99")) %>%
get_ci(level = 0.90, type = "percentile")
```

A tibble: 1 x 2
lower_ci upper_ci
<dbl> <dbl>
1 304. 1561.

Simulation–Based Bootstrap Distribution

Comparison with infer

```
dd %>% specify(ppc ~ carat) %>%
generate(reps = 10000, type = "bootstrap") %>%
calculate(stat = "diff in means", order = c("1", "0.99")) %>%
get_ci(level = 0.90, type = "percentile")
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 304. 1561.
```

Simulation–Based Bootstrap Distribution

• Despite concerns about Normality of population, simulation and theory-based methods give similar confidence intervals

Section 2

The World's Fastest Swimsuit

In the 2008 Olympics, controversy erupted over whether a new swimsuit design provided an unfair advantage to swimmers. Eventually, the International Swimming Organization banned the new suit. But can a certain suit really make a swimmer faster?

Data

A study analyzed max velocities for 12 pro swimmers with and without the suit:

_			
Ì	without_suit	with_suit	swimmer
_	1.49	1.57	1
	1.37	1.47	2
	1.35	1.42	3
	1.27	1.35	4
	1.12	1.22	5
	1.64	1.75	6
	1.59	1.64	7
	1.52	1.57	8
	1.50	1.56	9
	1.45	1.53	10
	1.44	1.49	11
	1.41	1.51	12
-			

Data

A study analyzed max velocities for 12 pro swimmers with and without the suit:

• Is is plausible the average velocity with the suit is greater than the average without the suit?

• Suppose we first treat this data as if it came from two *independent* populations.

- Suppose we first treat this data as if it came from two *independent* populations.
- We want to determine whether there is a positive difference in *average* max velocities for these two populations.
 - Let μ_s and μ_n be the average velocities for swimmers with **S**uit and with **N**o suit.

$$H_0: \mu_s - \mu_n = 0 \qquad H_a: \mu_s - \mu_n > 0$$

- Suppose we first treat this data as if it came from two *independent* populations.
- We want to determine whether there is a positive difference in *average* max velocities for these two populations.
 - Let μ_s and μ_n be the average velocities for swimmers with **S**uit and with **N**o suit.

$$H_0: \mu_s - \mu_n = 0 \qquad H_a: \mu_s - \mu_n > 0$$

- With only 12 data points, we can't use the sample's visualization to assess Normality.
 - However, analysis of other swim speed data does suggest max race swim speed is approximately Normal

- Suppose we first treat this data as if it came from two *independent* populations.
- We want to determine whether there is a positive difference in *average* max velocities for these two populations.
 - Let μ_s and μ_n be the average velocities for swimmers with **S**uit and with **N**o suit.

$$H_0: \mu_s - \mu_n = 0 \qquad H_a: \mu_s - \mu_n > 0$$

- With only 12 data points, we can't use the sample's visualization to assess Normality.
 - However, analysis of other swim speed data does suggest max race swim speed is approximately Normal
- Compute relevant statistics

```
## # A tibble: 2 x 4
## suit x_bar s n
## <chr> <ch > <
```

- Suppose we first treat this data as if it came from two *independent* populations.
- We want to determine whether there is a positive difference in *average* max velocities for these two populations.
 - Let μ_s and μ_n be the average velocities for swimmers with **S**uit and with **N**o suit.

$$H_0: \mu_s - \mu_n = 0 \qquad H_a: \mu_s - \mu_n > 0$$

- With only 12 data points, we can't use the sample's visualization to assess Normality.
 - However, analysis of other swim speed data does suggest max race swim speed is approximately Normal
- Compute relevant statistics

• Compute Test Statistic

```
## # A tibble: 2 x 4
## suit x_bar s n
## <chr> < chr> < dbl> <dbl> <dbl> <int>
## 1 with_suit 1.51 0.136 12
## 2 without_suit 1.43 0.141 12
```

$$t = \frac{\bar{x}_{\rm s} - \bar{x}_{\rm n}}{\sqrt{\frac{s_{\rm s}^2}{n_{\rm s}} + \frac{s_{\rm n}^2}{n_{\rm n}}}} = \frac{0.0775}{\sqrt{\frac{0.136^2}{12} + \frac{0.141^2}{12}}} = 1.369$$

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

• Obtain p-value:

1-pt(1.369, df = 11)

[1] 0.09915186

• The p-value of the sample 0.099 is relatively large (greater than $\alpha = 0.05$) so does not give convincing evidence to reject H_0

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

• Obtain p-value:

1-pt(1.369, df = 11)

[1] 0.09915186

- The p-value of the sample 0.099 is relatively large (greater than $\alpha = 0.05$) so does not give convincing evidence to reject H_0
 - Yet, the International Swimming Organization banned the new suit. What's going on?

Inference for 2 Means 000000000	Hypothesis Testing 00000●	Inference for Paired Samples

Reflections

• Consider our data. Each swimmer performed a race with and without the suit. We would expect velocities for each swimmer to be close together!

Inference			Means	

Reflections

• Consider our data. Each swimmer performed a race with and without the suit. We would expect velocities for each swimmer to be close together!

swimmer	with_suit	without_suit	difference
1	1.57	1.49	0.08
2	1.47	1.37	0.10
3	1.42	1.35	0.07
4	1.35	1.27	0.08
5	1.22	1.12	0.10
6	1.75	1.64	0.11
7	1.64	1.59	0.05
8	1.57	1.52	0.05
9	1.56	1.50	0.06
10	1.53	1.45	0.08
11	1.49	1.44	0.05
12	1.51	1.41	0.10

• •

line y=x

1.5

1.6

Reflections

 Consider our data. Each swimmer performed a race with and without the suit. We would expect velocities for each swimmer to be close together!

	1.7	difference	without_suit	with_suit	swimmer
		0.08	1.49	1.57	1
		0.10	1.37	1.47	2
	1.6	0.07	1.35	1.42	3
	÷	0.08	1.27	1.35	4
•		0.10	1.12	1.22	5
•	k ith	0.11	1.64	1.75	6
• /	14-	0.05	1.59	1.64	7
		0.05	1.52	1.57	8
•		0.06	1.50	1.56	9
	1.3	0.08	1.45	1.53	10
		0.05	1.44	1.49	11
•	1.2	0.10	1.41	1.51	12
1.2 1.3 1.4 without suit	. 1.1				

Each swimmer's time was faster with the suit than without the suit! ٠

Section 3

Inference for Paired Samples

Inference for 2 Means	Hypothesis Testing	Inference for Paired Samples
0000000000	000000	○●○○○

• Suppose you intend to design an experiment to determine whether the mean of two populations are equal.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
 - If matching is used, it is **not** appropriate to use the 2 sample procedures. (Why?)

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
 - If matching is used, it is **not** appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
 - If matching is used, it is not appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1-sample procedures for mean.

- Suppose you intend to design an experiment to determine whether the mean of two populations are equal.
- You could obtain an SRS from each population, compute means for each sample, take the difference, and assess variability based on previous procedures.
 - It *is* possible that any observed effect is not due to the explanatory variable, but to some confounding variable present in one sample but not other.
 - Or it is possible that a confounding variable *masks* a true effect.
- To reduce effect of confounding variable, you could match individuals in one sample with similar individuals in the other sample.
 - If matching is used, it is not appropriate to use the 2 sample procedures. (Why?)
- You can create a new variable recording the **difference** in measurements in each pair of individuals
- This new variable can be used to perform statistical inference using the 1-sample procedures for mean.
 - Rather than looking at the difference in means, we look at the mean of differences!

We want to determine whether the *average* difference in max velocity (with - without) is positive. Let μ be the average difference.

Write Hypotheses

 $H_0: \mu = 0 \quad H_a: \mu > 0$

We want to determine whether the *average* difference in max velocity (with - without) is positive. Let μ be the average difference.

Write Hypotheses

$$H_0: \mu = 0 \quad H_a: \mu > 0$$

- Occupation Compute relative statistics
- Average and sd of differences

A tibble: 1 x 3
x_bar s n
<dbl> <dbl> <int>
1 0.0775 0.0218 12

We want to determine whether the *average* difference in max velocity (with - without) is positive. Let μ be the average difference.

Write Hypotheses

$$H_0: \mu = 0 \quad H_a: \mu > 0$$

- Ompute relative statistics
- Average and sd of differences

A tibble: 1 x 3
x_bar s n
<dbl> <dbl> <int>
1 0.0775 0.0218 12

- 8 Compute test statistic
- Using the 1 sample procedures!

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{0.0775}{\frac{0.022}{\sqrt{12}}} = 12.32$$

P-Value

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

P-Value

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

P-Value

• Plotting our *t*-statistic against the theoretical *t*-distribution with df = 11

Obtain p-value:
 1-pt(12.32, df = 11)

[1] 0.00000044

Inference for 2 Means 0000000000	Hypothesis Testing 000000	Inference for Paired Samples 0000●
Conclusion		

• Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
Inference for 2 Means 0000000000	Hypothesis Testing 000000	Inference for Paired Samples 0000●
Conclusion		

- Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
 - This is the opposite conclusion we reached when treating the two samples as independent.

Inference for 2 Means	Hypothesis Testing	Inference for Paired Samples
0000000000	000000	○○○○●

- Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
 - This is the opposite conclusion we reached when treating the two samples as independent.
 - The differences between swimmers in the sample overpowered the differences within each swimmer, diminishing our ability to detect the effect of the suit

- Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
 - This is the opposite conclusion we reached when treating the two samples as independent.
 - The differences between swimmers in the sample overpowered the differences within each swimmer, diminishing our ability to detect the effect of the suit
 - By controlling for swimmer and analyzing differences for each swimmer, we were able to see the effect!

- Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
 - This is the opposite conclusion we reached when treating the two samples as independent.
 - The differences between swimmers in the sample overpowered the differences within each swimmer, diminishing our ability to detect the effect of the suit
 - By controlling for swimmer and analyzing differences for each swimmer, we were able to see the effect!
- Does the very small p-value give evidence that the suits give an extreme advantage?
 - Is a difference of 0.077 max velocity of practical significance?

- Since the p-value of the sample is extremely small (< 0.001), this gives us very convincing evidence that suits indeed increase max race speed.
 - This is the opposite conclusion we reached when treating the two samples as independent.
 - The differences between swimmers in the sample overpowered the differences within each swimmer, diminishing our ability to detect the effect of the suit
 - By controlling for swimmer and analyzing differences for each swimmer, we were able to see the effect!
- Does the very small p-value give evidence that the suits give an extreme advantage?
 - Is a difference of 0.077 max velocity of practical significance?
 - If the average max velocity is about 1.4, this is about a 5% increase in speed.
 - The velocity difference between 1st and 2nd place swimmers in many Olympic races is less than 1%