Inference for 2 Proportions

Prof. Wells

STA 209, 4/21/23

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Calculate confidence intervals for proportions
- Use the formula for standard error to determine necessary sample size
- Investigate the theoretical distribution for differences in proportions
- Calculate confidence intervals and conduct hypothesis tests for differences in proportions

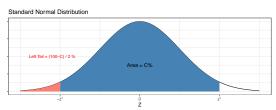
Section 1

Confidence Intervals

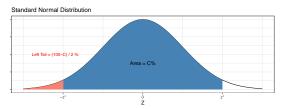
• The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution

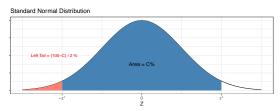


- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution



• The critical value for 95% confidence is the 95 + $\frac{100-95}{2}$ = 97.5 percentile

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution



• The critical value for 95% confidence is the 95 + $\frac{100-95}{2} =$ 97.5 percentile

[1] 1.959964

If the sample statistic is approximately Normal, the $\it C\%$ confidence interval is

$$\mathrm{statistic} \pm z^* \cdot SE$$

where z^* is the critical value confidence and SE is the standard error of the statistic

If the sample statistic is approximately Normal, the $\it C\%$ confidence interval is

statistic
$$\pm z^* \cdot SE$$

where z^* is the critical value confidence and SE is the standard error of the statistic

• The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.

If the sample statistic is approximately Normal, the $\it C\%$ confidence interval is

statistic
$$\pm z^* \cdot SE$$

where z^* is the critical value confidence and SE is the standard error of the statistic

- The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.
 - But since we don't know p, we estimate it in the SE formula with \hat{p} :

$$SE pprox \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

If the sample statistic is approximately Normal, the $\it C\%$ confidence interval is

statistic
$$\pm z^* \cdot SE$$

where z^* is the critical value confidence and SE is the standard error of the statistic

- The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.
 - But since we don't know p, we estimate it in the SE formula with \hat{p} :

$$SE pprox \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Theorem

Suppose an SRS of size n is collected from a population with parameter p. If n is large enough so that both $n\hat{p}$ and $n(1-\hat{p})$ are at least 10, then the confidence interval for p is

$$\hat{p}\pm z^*\cdot\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

 An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.
 - Due to sampling, it's unlikely that exactly 48% of lowers planned to vote for Donald Trump in the 2020 election. But we can create a confidence interval to estimate the true proportion p.

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.
 - Due to sampling, it's unlikely that exactly 48% of lowans planned to vote for Donald Trump in the 2020 election. But we can create a confidence interval to estimate the true proportion p.
- Using the poll data, $\hat{p} = 0.48$, which means the standard error is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.48(1-0.48)}{814}} = 0.0175$$

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.
 - Due to sampling, it's unlikely that exactly 48% of lowans planned to vote for Donald Trump in the 2020 election. But we can create a confidence interval to estimate the true proportion p.
- Using the poll data, $\hat{p} = 0.48$, which means the standard error is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.48(1-0.48)}{814}} = 0.0175$$

• Previously, we calculated the critical value z^* for 95% confidence: $z^* = 1.96$

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.
 - Due to sampling, it's unlikely that exactly 48% of lowans planned to vote for Donald Trump in the 2020 election. But we can create a confidence interval to estimate the true proportion p.
- Using the poll data, $\hat{p} = 0.48$, which means the standard error is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.48(1-0.48)}{814}} = 0.0175$$

- Previously, we calculated the critical value z^* for 95% confidence: $z^* = 1.96$
- Putting this all together, our confidence interval is

$$\hat{p} \pm z^* \cdot SE \iff 0.48 \pm 1.96 \cdot 0.0175 \iff (0.4457, 0.5143)$$

- An October 2020 poll by the firm Selzer & Co, sponsored by the Des Moines Register, asked 814 likely lowa voters: "If the general election were held today, for whom would you vote?"
 - 48% of respondents indicated Donald Trump, while 41% indicated Joe Biden. Then remaining 11% indicated another preference.
 - Due to sampling, it's unlikely that exactly 48% of lowans planned to vote for Donald Trump in the 2020 election. But we can create a confidence interval to estimate the true proportion p.
- Using the poll data, $\hat{p} = 0.48$, which means the standard error is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.48(1-0.48)}{814}} = 0.0175$$

- Previously, we calculated the critical value z^* for 95% confidence: $z^* = 1.96$
- Putting this all together, our confidence interval is

$$\hat{p} \pm z^* \cdot SE \iff 0.48 \pm 1.96 \cdot 0.0175 \iff (0.4457, 0.5143)$$

 The poll estimated between 44.6% and 51.4% of lowans intended to vote for Trump, with confidence 95%.

Confidence Intervals in 'infer1

• How does this compare to the bootstrap method?

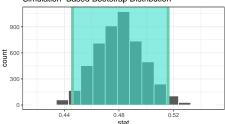
Confidence Intervals in 'infer1

• How does this compare to the bootstrap method?

```
pres_poll %>% specify(response = vote, success = "Trump") %>%
  generate(reps = 5000, type = "bootstrap") %>%
  calculate(stat = "prop") %>%
  get_ci(level = 0.95, type = "percentile")
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.446 0.516
```

Simulation-Based Bootstrap Distribution



 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

$$MoE = z^* \cdot SE = z^* \cdot \sqrt{\frac{p(1-p)}{n}}$$

 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

$$MoE = z^* \cdot SE = z^* \cdot \sqrt{\frac{p(1-p)}{n}}$$

• Suppose we want to estimate p to within Margin of Error of 0.01, with 95% confidence. We can solve the Margin of Error equation for n.

$$\mathrm{MoE} = z^* \cdot \sqrt{\frac{p(1-p)}{n}} \quad \Longleftrightarrow \quad n = \left(\frac{z^*}{\mathrm{MoE}}\right)^2 p(1-p)$$

 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

$$MoE = z^* \cdot SE = z^* \cdot \sqrt{\frac{p(1-p)}{n}}$$

• Suppose we want to estimate p to within Margin of Error of 0.01, with 95% confidence. We can solve the Margin of Error equation for n.

$$\mathrm{MoE} = z^* \cdot \sqrt{\frac{p(1-p)}{n}} \quad \Longleftrightarrow \quad n = \left(\frac{z^*}{\mathrm{MoE}}\right)^2 p(1-p)$$

• There is a problem! We don't know p (it's what we are trying to estimate). And we also don't have \hat{p} either (we need to determine a sample size before we gather data)

 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

$$MoE = z^* \cdot SE = z^* \cdot \sqrt{\frac{p(1-p)}{n}}$$

• Suppose we want to estimate p to within Margin of Error of 0.01, with 95% confidence. We can solve the Margin of Error equation for n.

$$\mathrm{MoE} = z^* \cdot \sqrt{\frac{p(1-p)}{n}} \quad \Longleftrightarrow \quad n = \left(\frac{z^*}{\mathrm{MoE}}\right)^2 p(1-p)$$

- There is a problem! We don't know p (it's what we are trying to estimate). And we also don't have \hat{p} either (we need to determine a sample size before we gather data)
 - Instead, we'll use our best guess for p using information available. We can also default to using p=0.5 (corresponding to the most conservative estimate of sample size)

 One advantage of the theory-based method is it allows us to determine the sample size needed for a desired margin of error.

$$\text{MoE} = z^* \cdot SE = z^* \cdot \sqrt{\frac{p(1-p)}{n}}$$

• Suppose we want to estimate p to within Margin of Error of 0.01, with 95% confidence. We can solve the Margin of Error equation for n.

$$\mathrm{MoE} = z^* \cdot \sqrt{\frac{p(1-p)}{n}} \quad \Longleftrightarrow \quad n = \left(\frac{z^*}{\mathrm{MoE}}\right)^2 p(1-p)$$

- There is a problem! We don't know p (it's what we are trying to estimate). And we also don't have \hat{p} either (we need to determine a sample size before we gather data)
 - Instead, we'll use our best guess for p using information available. We can also default to using p=0.5 (corresponding to the most conservative estimate of sample size)
- In this case, using p = 0.5, the necessary sample size is

$$n = \left(\frac{1.96}{0.01}\right)^2 0.5 \cdot (1 - 0.5) = 9604$$

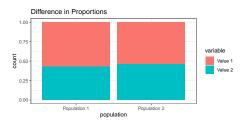
Section 2

Difference in Proportions

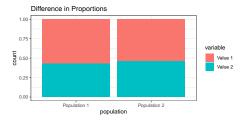
• Suppose we have two populations and wish to compare the proportions p_1 and p_2 of the level of a categorical variable in each population.

- Suppose we have two populations and wish to compare the proportions p_1 and p_2 of the level of a categorical variable in each population.
- That is, we want to know the value of the difference p_1-p_2 in proportion.

- Suppose we have two populations and wish to compare the proportions p_1 and p_2 of the level of a categorical variable in each population.
- That is, we want to know the value of the difference $p_1 p_2$ in proportion.

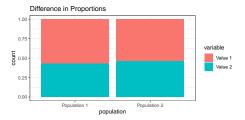


- Suppose we have two populations and wish to compare the proportions p_1 and p_2 of the level of a categorical variable in each population.
- That is, we want to know the value of the difference $p_1 p_2$ in proportion.



• A reasonable point estimate for $p_1 - p_2$ is the difference in sample proportions $\hat{p}_1 - \hat{p}_2$ for a sample taken from the 1st and 2nd populations.

- Suppose we have two populations and wish to compare the proportions p_1 and p_2 of the level of a categorical variable in each population.
- That is, we want to know the value of the difference $p_1 p_2$ in proportion.



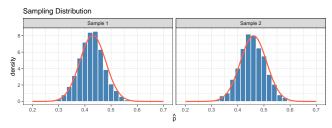
- A reasonable point estimate for $p_1 p_2$ is the difference in sample proportions $\hat{p}_1 \hat{p}_2$ for a sample taken from the 1st and 2nd populations.
- As long as we can verify that the statistic $\hat{p}_1 \hat{p}_2$ has an approximately Normal distribution, we can use the same techniques we used for single sample proportions.

Distribution for $\hat{p}_1 - \hat{p}_2$

• We know that individually, both \hat{p}_1 and \hat{p}_2 are approximately Normal:

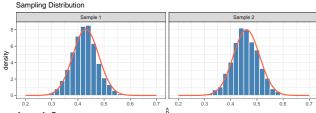
Distribution for $\hat{p}_1 - \hat{p}_2$

• We know that individually, both \hat{p}_1 and \hat{p}_2 are approximately Normal:



Distribution for $\hat{p}_1 - \hat{p}_2$

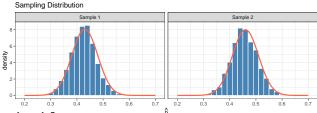
• We know that individually, both \hat{p}_1 and \hat{p}_2 are approximately Normal:



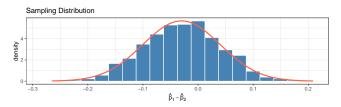
• What about $\hat{p}_1 - \hat{p}_2$?

Distribution for $\hat{p}_1 - \hat{p}_2$

• We know that individually, both \hat{p}_1 and \hat{p}_2 are approximately Normal:

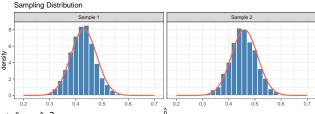


• What about $\hat{p}_1 - \hat{p}_2$?

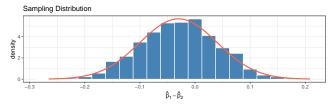


Distribution for $\hat{p}_1 - \hat{p}_2$

• We know that individually, both \hat{p}_1 and \hat{p}_2 are approximately Normal:



• What about $\hat{p}_1 - \hat{p}_2$?



 The sum or difference of independent Normal variables will also be Normal, with variance equal to the sum of individual variances.

Conditions for Theory-based Normal Approximation

Theorem

The difference $\hat{p}_1 - \hat{p}_2$ is approximately Normal when

- **1** Each sample proportion is approximately normal (≥ 10 success/failure)
- 2 The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{SE_{\hat{p}_1}^2 + SE_{\hat{p}_2}^2} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Conditions for Theory-based Normal Approximation

Theorem

The difference $\hat{p}_1 - \hat{p}_2$ is approximately Normal when

- Each sample proportion is approximately normal (≥ 10 success/failure)
- 2 The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{SE_{\hat{p}_1}^2 + SE_{\hat{p}_2}^2} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Importantly, we know the distribution is Normal and we have the standard error

Conditions for Theory-based Normal Approximation

Theorem

The difference $\hat{p}_1 - \hat{p}_2$ is approximately Normal when

- Each sample proportion is approximately normal (≥ 10 success/failure)
- 2 The two samples are independent of each other

In this case, the standard error of the difference in sample proportions is

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{SE_{\hat{p}_1}^2 + SE_{\hat{p}_2}^2} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

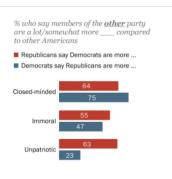
- Importantly, we know the distribution is Normal and we have the standard error
 - We can use qnorm to find critical values for confidence intervals and pnorm to compute P-values for hypothesis tests

Partisanship

U.S. POLITICS | OCTOBER 10, 2019

Partisan Antipathy: More Intense, More Personal

The share of Republicans who give Democrats a "cold" rating on a 0-100 thermometer has risen 14 percentage points since 2016. Similarly, 57% of Democrats give Republicans a very cold rating, up from 2016.

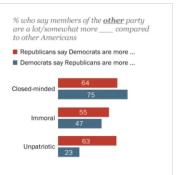


Partisanship

U.S. POLITICS | OCTOBER 10, 2019

Partisan Antipathy: More Intense, More Personal

The share of Republicans who give Democrats a "cold" rating on a 0-100 thermometer has risen 14 percentage points since 2016. Similarly, 57% of Democrats give Republicans a very cold rating, up from 2016.



 Was there really a difference in the proportion of Democrats that view Republicans as close-minded compared to Republicans that view Democrats the same? Or is the difference just due to random sampling?

ullet Recall that the formula for a confidence interval for p_r-p_d is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

• Recall that the formula for a confidence interval for $p_r - p_d$ is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

• From the study, we determine sample proportions and sample sizes:

$$\hat{p}_r = 0.64$$
 $n_r = 4948$ $\hat{p}_d = 0.75$ $n_d = 4947$

• Recall that the formula for a confidence interval for $p_r - p_d$ is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

• From the study, we determine sample proportions and sample sizes:

$$\hat{p}_r = 0.64$$
 $n_r = 4948$ $\hat{p}_d = 0.75$ $n_d = 4947$

Our standard error is therefore

$$SE = \sqrt{\frac{\hat{p}_r(1-\hat{p}_r)}{n_r} + \frac{\hat{p}_d(1-\hat{p}_d)}{n_d}} = \sqrt{\frac{0.64(1-0.64)}{4948} + \frac{0.75(1-0.75)}{4947}} = 0.009$$

• Recall that the formula for a confidence interval for $p_r - p_d$ is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

• From the study, we determine sample proportions and sample sizes:

$$\hat{p}_r = 0.64$$
 $n_r = 4948$ $\hat{p}_d = 0.75$ $n_d = 4947$

Our standard error is therefore

$$SE = \sqrt{\frac{\hat{p}_r(1-\hat{p}_r)}{n_r} + \frac{\hat{p}_d(1-\hat{p}_d)}{n_d}} = \sqrt{\frac{0.64(1-0.64)}{4948} + \frac{0.75(1-0.75)}{4947}} = 0.009$$

Using qnorm in R, the critical value z* for 95% confidence is

$$qnorm(.975, mean = 0, sd = 1)$$

[1] 1.959964

• Recall that the formula for a confidence interval for $p_r - p_d$ is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

• From the study, we determine sample proportions and sample sizes:

$$\hat{p}_r = 0.64$$
 $n_r = 4948$ $\hat{p}_d = 0.75$ $n_d = 4947$

Our standard error is therefore

$$SE = \sqrt{\frac{\hat{p}_r(1-\hat{p}_r)}{n_r} + \frac{\hat{p}_d(1-\hat{p}_d)}{n_d}} = \sqrt{\frac{0.64(1-0.64)}{4948} + \frac{0.75(1-0.75)}{4947}} = 0.009$$

Using qnorm in R, the critical value z* for 95% confidence is

$$qnorm(.975, mean = 0, sd = 1)$$

[1] 1.959964

• Assembling these pieces, the confidence interval for $p_r - p_d$ is

$$(0.64 - 0.75) \pm 1.96 \cdot 0.009 \iff (-0.128, -0.092)$$

• Recall that the formula for a confidence interval for $p_r - p_d$ is

$$(\hat{p}_r - \hat{p}_d) \pm z^* \cdot SE$$

From the study, we determine sample proportions and sample sizes:

$$\hat{p}_r = 0.64$$
 $n_r = 4948$ $\hat{p}_d = 0.75$ $n_d = 4947$

$$\hat{p}_d = 0.75 \quad n_d = 494$$

Our standard error is therefore

$$SE = \sqrt{\frac{\hat{p}_r(1-\hat{p}_r)}{n_r} + \frac{\hat{p}_d(1-\hat{p}_d)}{n_d}} = \sqrt{\frac{0.64(1-0.64)}{4948} + \frac{0.75(1-0.75)}{4947}} = 0.009$$

• Using gnorm in R, the critical value z* for 95% confidence is

$$qnorm(.975, mean = 0, sd = 1)$$

[1] 1.959964

Assembling these pieces, the confidence interval for $p_r - p_d$ is

$$(0.64 - 0.75) \pm 1.96 \cdot 0.009 \iff (-0.128, -0.092)$$

$$(-0.128, -0.092)$$

It is plausible that true difference in proportion is between -9.2% and -12.8%

Confidence Interval via infer

 \bullet Alternatively, we can use ${\tt infer}$ to compute confidence intervals.

Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.

```
pew %>%
  specify(response = close_minded, explanatory = party, success = "yes" ) %>%
  generate(reps = 5000, type = "bootstrap" ) %>%
  calculate( "diff in props", order = c("Republican", "Democrat") ) %>%
  get_ci(level = .95, type = "percentile")
## # A tibble: 1 x 2
```

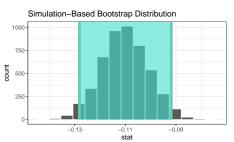
```
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.128 -0.0919
```

Confidence Interval via infer

Alternatively, we can use infer to compute confidence intervals.

```
pew %>%
  specify(response = close_minded, explanatory = party, success = "yes" ) %>%
  generate(reps = 5000, type = "bootstrap" ) %>%
  calculate( "diff in props", order = c("Republican", "Democrat") ) %>%
  get_ci(level = .95, type = "percentile")
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 -0.128 -0.0919
```



Suppose we are interested in testing the following hypotheses

$$H_0: p_1 = p_2 \qquad H_a: p_1 \neq p_2$$

Suppose we are interested in testing the following hypotheses

$$H_0: p_1 = p_2 \qquad H_a: p_1 \neq p_2$$

• If the null hypothesis is true, collecting a sample of sizes n_1 and n_2 from each population is the same as collecting a single sample of size $n_1 + n_2$.

Suppose we are interested in testing the following hypotheses

$$H_0: p_1 = p_2$$
 $H_a: p_1 \neq p_2$

- If the null hypothesis is true, collecting a sample of sizes n_1 and n_2 from each population is the same as collecting a single sample of size $n_1 + n_2$.
 - So we may instead consider the pooled proportion \hat{p} given by

$$\hat{p} = \frac{\text{overall successes}}{\text{overall sample size}} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

Suppose we are interested in testing the following hypotheses

$$H_0: p_1 = p_2$$
 $H_a: p_1 \neq p_2$

- If the null hypothesis is true, collecting a sample of sizes n_1 and n_2 from each population is the same as collecting a single sample of size $n_1 + n_2$.
 - So we may instead consider the pooled proportion \hat{p} given by

$$\hat{p} = \frac{\text{overall successes}}{\text{overall sample size}} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

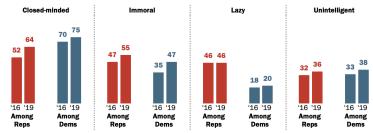
• This gives a standard error for the null distribution of

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}$$

Partisanship over Time

Increasing shares of partisans see members of the other party as 'closed-minded' and 'immoral'

% who say members of the other party are a lot/somewhat more ____ compared to other Americans



Note: Partisans do not include leaners.

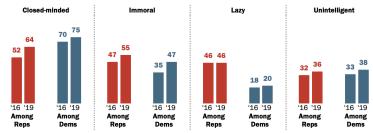
Source: Survey of U.S. adults conducted Sept. 3-15, 2019.

PEW RESEARCH CENTER

Partisanship over Time

Increasing shares of partisans see members of the other party as 'closed-minded' and 'immoral'

% who say members of the other party are a lot/somewhat more ____ compared to other Americans



Note: Partisans do not include leaners.

Source: Survey of U.S. adults conducted Sept. 3-15, 2019.

PEW RESEARCH CENTER

 Was there really a change in the proportion of Democrats that view Republicans as close-minded between 2016 and 2019?

We test

$$H_0: p_{16} = p_{19}$$
 $H_a: p_{16} \neq p_{19}$

We test

$$H_0: p_{16} = p_{19} \qquad H_a: p_{16} \neq p_{19}$$

In the study, we find

$$\hat{p}_{16} = 0.7$$
 $n_{16} = 4948$ $\hat{p}_{19} = 0.75$ $n_{19} = 4947$

which gives a pooled proportion of

$$\hat{p} = \frac{n_{16}\hat{p}_{16} + n_{19}\hat{p}_{19}}{n_{16} + n_{19}} = 0.725$$

We test

$$H_0: p_{16} = p_{19} \qquad H_a: p_{16} \neq p_{19}$$

In the study, we find

$$\hat{p}_{16} = 0.7$$
 $n_{16} = 4948$ $\hat{p}_{19} = 0.75$ $n_{19} = 4947$

which gives a pooled proportion of

$$\hat{p} = \frac{n_{16}\hat{p}_{16} + n_{19}\hat{p}_{19}}{n_{16} + n_{19}} = 0.725$$

The standard error for the null distribution is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_{16}} + \frac{\hat{p}(1-\hat{p})}{n_{19}}} = \sqrt{\frac{0.725(1-0.725)}{4948} + \frac{0.725(1-0.725)}{4947}} = 0.009$$

We test

$$H_0: p_{16} = p_{19}$$
 $H_a: p_{16} \neq p_{19}$

In the study, we find

$$\hat{p}_{16} = 0.7$$
 $n_{16} = 4948$ $\hat{p}_{19} = 0.75$ $n_{19} = 4947$

which gives a pooled proportion of

$$\hat{p} = \frac{n_{16}\hat{p}_{16} + n_{19}\hat{p}_{19}}{n_{16} + n_{19}} = 0.725$$

The standard error for the null distribution is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_{16}} + \frac{\hat{p}(1-\hat{p})}{n_{19}}} = \sqrt{\frac{0.725(1-0.725)}{4948} + \frac{0.725(1-0.725)}{4947}} = 0.009$$

Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

We test

$$H_0: p_{16} = p_{19} \qquad H_a: p_{16} \neq p_{19}$$

In the study, we find

$$\hat{p}_{16} = 0.7$$
 $n_{16} = 4948$ $\hat{p}_{19} = 0.75$ $n_{19} = 4947$

which gives a pooled proportion of

$$\hat{p} = \frac{n_{16}\hat{p}_{16} + n_{19}\hat{p}_{19}}{n_{16} + n_{19}} = 0.725$$

The standard error for the null distribution is

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_{16}} + \frac{\hat{p}(1-\hat{p})}{n_{19}}} = \sqrt{\frac{0.725(1-0.725)}{4948} + \frac{0.725(1-0.725)}{4947}} = 0.009$$

Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

• Without computing a p-value, does this seem to be statistically significant?

• Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

• Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

- By the CLT, z-scores are approximately standard Normal, so we compute p-values using pnorm.
 - Since H_a was two-sided, and z < 0, we compute the area in the left tail, and double.

Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

- By the CLT, z-scores are approximately standard Normal, so we compute p-values using pnorm.
 - Since H_a was two-sided, and z < 0, we compute the area in the left tail, and double.
- 2*pnorm(-5.569, mean = 0, sd = 1)
- ## [1] 0.00000002562

• Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

- By the CLT, z-scores are approximately standard Normal, so we compute p-values using pnorm.
 - Since H_a was two-sided, and z < 0, we compute the area in the left tail, and double.

```
2*pnorm(-5.569, mean = 0, sd = 1)
```

- ## [1] 0.00000002562
 - The test is significant at $\alpha = 0.01$ and we reject the null hypothesis.

• Our test statistic is

$$z = \frac{\hat{p}_{16} - \hat{p}_{19}}{SE} = \frac{0.7 - 0.75}{0.009} = -5.57$$

- By the CLT, z-scores are approximately standard Normal, so we compute p-values using pnorm.
 - Since H_a was two-sided, and z < 0, we compute the area in the left tail, and double.

```
2*pnorm(-5.569, mean = 0, sd = 1)
```

- ## [1] 0.00000002562
 - The test is significant at $\alpha=0.01$ and we reject the null hypothesis.
 - It is unlikely that the observed difference in proportions is due to chance, if the
 populations truly had the same proportion.

 \bullet Repeating our analysis, this time using ${\tt infer}$

Repeating our analysis, this time using infer

```
pew2 %>% specify(response = close_minded, explanatory = year, success = "yes" ) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute" ) %>%
  calculate( "diff in props", order = c("2016", "2019") ) %>%
  get_p_value(obs_stat = (0.7 - 0.75), direction = "both")
```

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0
```

Repeating our analysis, this time using infer

```
pew2 %>% specify(response = close_minded, explanatory = year, success = "yes" ) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute" ) %>%
  calculate( "diff in props", order = c("2016", "2019") ) %>%
  get_p_value(obs_stat = (0.7 - 0.75), direction = "both")
## # A tibble: 1 x 1
```

```
## p_value
## <dbl>
## 1 0
```

Why did the infer method report a p-value of 0?

Repeating our analysis, this time using infer

```
pew2 %>% specify(response = close_minded, explanatory = year, success = "yes" ) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute" ) %>%
  calculate( "diff in props", order = c("2016", "2019") ) %>%
  get_p_value(obs_stat = (0.7 - 0.75), direction = "both")
## # A tibble: 1 x 1
```

```
## p_value
## <dbl>
## 1 0
```

Why did the infer method report a p-value of 0?

