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Outline

In this lecture, we will. . .

• Discuss the Central Limit Theorem and its role in statistics
• Use theory to find the standard error for one sample proportions
• Calculate confidence intervals and perform hypothesis tests for proportions using the

theory-based method
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Section 1

The Central Limit Theorem
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Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100
students:
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Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the
average score x̄ for each sample

• What does the distribution of sample means x̄ look like?
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The Normal Distribution

• In the previous example, the sampling distribution for each class appeared
approximately Normal, regardless of the shape of the population distribution.
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Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution
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Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample
(keeping the number of samples drawn constant)?
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• As sample size increases, sampling distribution becomes more Normal, with
decreasing variance
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The Central Limit Theorem

Theorem
Suppose an SRS of size n is drawn from a population with mean µ and standard deviation
σ. When n is large, the sample mean x̄ is approximately Normally distributed, with mean
µ and standard deviation σ√

n .

A proof of the CLT requires more advanced techniques in probability (STA 335/336). But
intuitively. . .

• A sample mean is obtained by adding together INDEPENDENT values from the population.
• In order to get a very large or very small value, nearly ALL of the independent values need to

be extreme.
• To get a moderate value, many can be extreme in the opposite direction, or many can be

moderate (or several variations in between).
• There are more ways to obtain moderate values in an average than to obtain extreme values
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Implications for Statistics

• Regardless of the underlying population distribution, when sample size is large, the
distribution of sample means is predictable, and variance in means decreases as
sample size increases

• We can use properties of the Normal distribution to determine probabilities of
obtaining extreme sample statistics

• Statistical inference can be performed using theoretical density functions, in addition
to using simulation and bootstrapping
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Theory vs Simulation Methods

We have two ways of making confidence intervals / performing hypothesis tests:
• Previously, we. . .

• Constructed confidence intervals by approximating the sampling distribution through
bootstrapping, used percentile method to get interval bounds.

• Performed hypothesis tests by creating the null distribution through randomization,
calculating p-values as proportions of extreme null statistics.

• But now, using the Central Limit Theorem, we can. . .
• Construct confidence intervals using the quantiles of the Normal distribution, which can

be transformed into bounds for the confidence intervals.
• Perform hypothesis tests by obtaining p-values from probabilities in the Normal

distribution.

• Why learn two methods?
• The Theory-based method works best when modeling assumptions are true
• Simulation-based methods can perform well in a variety of circumstances, but sometimes

lack precision; they also require access to computing technology
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Section 2

Inference for a Single Proportion
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The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels: A and B. Let p be the
proportion of A’s in the population.

• Suppose we randomly choose a single observation from a population, and define a
random variable X to be 1 if the observation is an A, and 0 if it is a B.

• The mean of X is p, and the standard deviation of X is
√

p(1 − p)

• If we instead take an SRS of size n from the population, we can view the sample
proportion p̂ as a sample mean:

• Suppose each person in the sample has their own binary variable Xi . Then the sum
X1 + · · · + Xn is the number of A’s in the sample, and the mean of the Xi is the
proportion of A’s.

• By the Central Limit Theorem, if n is large, then p̂ is approximately Normal, with
mean p and standard deviation

√
p(1−p)

n
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Examples

• Below are the sampling distributions for p̂ for a variety of values of p and n, along
with the approximating Normal curve:
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Section 3

Hypothesis Tests
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z-Scores

• The z-score for a statistic x with standard error SE and mean µ is

z =
x − µ

SE

• A z-score tells us how extreme an observed statistic is (i.e. how far it is from its
mean), relative to its standard deviation.

• Positive (negative) z-scores indicate statistics larger (smaller) than the mean

• For approximately Normally distributed data, 68-95-99.7% of observations are within
1-2-3 standard deviations of their mean.

• Thus, 68% of observed samples have z-scores between −1 and 1, 95% of samples have
z-scores between −2 and 2, and 99.7% of samples have z-scores between −3 and 3.

• Suppose a statistic X is approximately Normal with mean µ and standard deviation
SE . Then

Z =
X − µ

SE
is approximately standard Normal (mean of 0, st. dev. of 1).
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Hypothesis Tests

By the central limit theorem, if H0 : p = p0 is true, then for large n, p̂ is approximately
Normal, with the standard error

SE(p̂) =

√
p0(1 − p0)

n

Theorem
To test H0 : p = p0 against Ha : p ̸= p0 (or the one-sided alternative) we use the
standardized test statistic

z = p̂ − p0√
p0(1−p0)

n

If n is large enough so that both np̂ and n(1 − p̂) are at least 10, then the p-value for the
test is computed using the standard Normal distribution.
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P-Values

• Recall that the p-value of a sample is the probability of obtaining a sample more
extreme than the observed sample, if the null hypothesis were true.

• To obtain the p-value of an observed sample p̂, we first calculate the corresponding
z-score:

z =
p̂ − p0√
p0(1−p0)

n

• The p-value of the sample is the probability of obtaining a sample with z-score more
extreme than the observed z-score.

• By the Central Limit Theorem, these z-scores are approximately standard Normal. We
can compute desired probabilities using the pnorm() function in R.

p_0 p̂

Sample Proportions

Null Distribution

p−value

0 z
Z−scores

Distribution of Z−Scores
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Taste Test

• Are these the same?
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Taste Test

• In a previous year, intro stat students participated in an experiment to determine
whether they can distinguish between two different flavors of carbonated water.

• Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup
had a different flavor. Students were asked to identify the cup that was different.

• Null Hypothesis: flavors cannot be distinguished.
• Alternative Hypothesis: flavors can be distinguished to some extent.
• Let p denote the true proportion of the population who can correctly identify the cup

that is different.
• If H0 is true, what is the corresponding value of p?
• If Ha is true, how does the true value of p compare to the null value?

H0 : p =
1
3

Ha : p >
1
3
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Taste Test Results

• Of 59 students who performed experiment, 29 students correctly identified the
different cup

• Our sample statistic is p̂ = 29
59 = 0.49

• If H0 is true, the standard error for p̂ is

SE(p̂) =

√
p0(1 − p0)

n =

√
0.33(1 − 0.33)

59 = 0.061

• The z-score for p̂ is therefore

z = p̂ − p0

SE = 0.49 − 0.33
0.061 = 2.578

• That is, the observed p̂ was 2.5 standard errors above the mean.
• This seems unlikely to occur, if the null hypothesis were true (remember, 95% of all

observations are within 2 standard errors of mean)
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Calculate P-Value

• If H0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.

• The p-value is the probability that a standard Normal variable is larger than z = 2.578

z = 2.578

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
Z

de
ns

ity

Distribution of z−scores

• The exact p-value is
1-pnorm(q=2.578, mean = 0, sd = 1)

## [1] 0.0049687

Prof. Wells Inference for Proportions STA 209, 4/19/23 23 / 29



The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Calculate P-Value

• If H0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
• The p-value is the probability that a standard Normal variable is larger than z = 2.578

z = 2.578

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
Z

de
ns

ity

Distribution of z−scores

• The exact p-value is
1-pnorm(q=2.578, mean = 0, sd = 1)

## [1] 0.0049687

Prof. Wells Inference for Proportions STA 209, 4/19/23 23 / 29



The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Calculate P-Value

• If H0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
• The p-value is the probability that a standard Normal variable is larger than z = 2.578

z = 2.578

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
Z

de
ns

ity

Distribution of z−scores

• The exact p-value is
1-pnorm(q=2.578, mean = 0, sd = 1)

## [1] 0.0049687

Prof. Wells Inference for Proportions STA 209, 4/19/23 23 / 29



The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Calculate P-Value

• If H0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
• The p-value is the probability that a standard Normal variable is larger than z = 2.578

z = 2.578

0.0

0.1

0.2

0.3

0.4

−3 −2 −1 0 1 2 3
Z

de
ns

ity

Distribution of z−scores

• The exact p-value is
1-pnorm(q=2.578, mean = 0, sd = 1)

## [1] 0.0049687

Prof. Wells Inference for Proportions STA 209, 4/19/23 23 / 29



The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Conclusions

• If the two types of carbonated water were indistinguishable, we would expect that
approximately 33% of students would identify the correct cup due by random guessing.

• Moreover, we would observe a sample proportion greater than or equal to 49% only
0.5% of the time (p-value = 0.0049687)

• At a liberal significance level of α = 0.1, since p-value < α, we reject the null
hypothesis in favor of the alternative.

• This experiment provides evidence that the two flavors are indeed distinguishable

• How does this compare to the simulation results?
set.seed(48)
lacroix %>% specify(response = correct, success = "yes") %>%

hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = .5, direction = "right")

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0038
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Section 4

Confidence Intervals
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Critical Values

• The critical value z∗ for a C% confidence interval is the value so that C% of area is
between −z∗ and z∗ in the standard Normal distribution

• That is, the critical value of C% confidence is the C + 1−C
2 percentile of the standard

Normal distribution

Area = C%

Left Tail = (100−C) / 2 %

−z* 0 z*
Z

Standard Normal Distribution

• The critical value for 95% confidence is the 95 + 100−95
2 = 97.5 percentile

qnorm(.975, mean = 0, sd = 1) # The 97.5 percentile is the .975 quantile

## [1] 1.959964
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The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Confidence Intervals

If the sample statistic is approximately Normal, the C% confidence interval is

statistic ± z∗ · SE
where z∗ is the critical value confidence and SE is the standard error of the statistic

• The standard error for a sample proportion p̂ is SE =
√

p(1−p)
n .

• But since we don’t know p, we estimate it in the SE formula with p̂:

SE ≈

√
p̂(1 − p̂)

n

Theorem
Suppose an SRS of size n is collected from a population with parameter p. If n is large
enough so that both np̂ and n(1 − p̂) are at least 10, then the confidence interval for p is

p̂ ± z∗ ·

√
p̂(1 − p̂)

n
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The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

Taste Test Continued

• Suppose we are interested in estimating the value of p, the proportion of the
population who will correctly identify the different cup.

• Create a 90% confidence interval for this parameter.

• As before, our sample statistic is p̂ = 29
59 .

• The critical value for a 90% confidence interval is the number z∗ so that 90% area is
between −z∗ and z∗. It is the 0.95 quantile

qnorm(p = .95, mean = 0, sd = 1)

## [1] 1.644854

• The standard error for p̂ is

SE(p̂) ≈

√
p̂(1 − p̂)

n =

√
0.49(1 − 0.49)

59 = 0.065
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The Central Limit Theorem Inference for a Single Proportion Hypothesis Tests Confidence Intervals

An Example

• The theory-based confidence interval takes the form
p̂ ± z∗ · SE

• In this case,
0.49 ± 1.64 · 0.065 or 0.49 ± 0.1066

• That is, a plausible range of values for p is 0.38 to 0.60, with confidence 90%.
• How does this compare to the bootstrap method?

set.seed(84)
lacroix %>% specify(response = correct, success = "yes") %>%

generate(reps=5000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .9, type = "percentile")

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.390 0.593
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