Inference for Proportions

Prof. Wells

STA 209, 4/19/23

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000000	00000

Outline

In this lecture, we will...

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	00000

Outline

In this lecture, we will...

- Discuss the Central Limit Theorem and its role in statistics
- Use theory to find the standard error for one sample proportions
- Calculate confidence intervals and perform hypothesis tests for proportions using the theory-based method

Confidence Intervals 00000

Section 1

The Central Limit Theorem

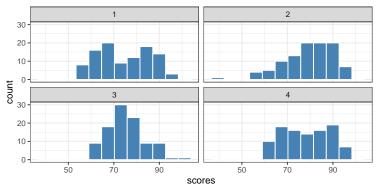
The Central Limit Theorem 0●00000000	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 00000
Exam scores			

Consider the following distributions for scores on a statistics exam for 4 classes of 100 students:

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0●00000000	000	000000000	00000

Exam scores

Consider the following distributions for scores on a statistics exam for 4 classes of 100 students:



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00●0000000	000	000000000	00000

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00●0000000	000	000000000	00000

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

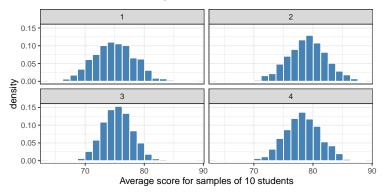
• What does the distribution of sample means \bar{x} look like?

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 00000

Random Sample Means

Suppose we repeatedly take samples of 10 students from each class, and compute the average score \bar{x} for each sample

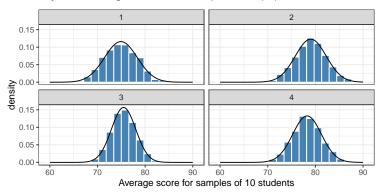
• What does the distribution of sample means \bar{x} look like?



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
000●000000	000	000000000	00000

The Normal Distribution

 In the previous example, the sampling distribution for *each* class appeared approximately Normal, regardless of the shape of the population distribution.



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000●00000		000000000	00000

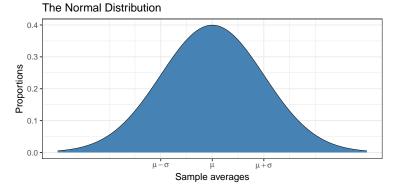
The Normal Distribution

• In the previous example, the sampling distribution for *each* class appeared approximately Normal, regardless of the shape of the population distribution.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000●00000		000000000	00000

The Normal Distribution

 In the previous example, the sampling distribution for each class appeared approximately Normal, regardless of the shape of the population distribution.



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00000●0000		000000000	00000

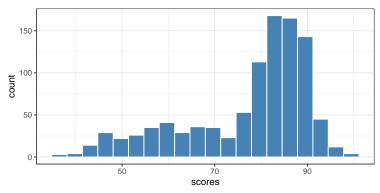
Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00000●0000		000000000	00000

Effect of Sample Size

Suppose we have a class of 1000 students with the following score distribution



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
000000●000		000000000	00000

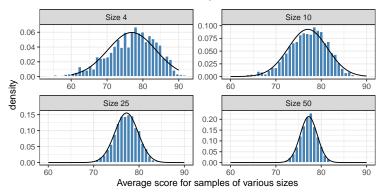
Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 00000

Effect of Sample Size II

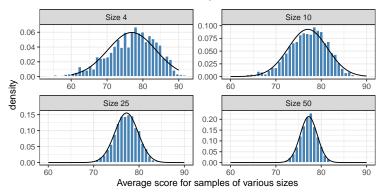
What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	
000000000			

Effect of Sample Size II

What happens to the distribution of sample means as we increase the size of each sample (keeping the number of samples drawn constant)?



• As sample size increases, sampling distribution becomes **more** Normal, with **decreasing** variance

Confidence Intervals 00000

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ . When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

Confidence Intervals 00000

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ . When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

A proof of the CLT requires more advanced techniques in probability (STA 335/336). But intuitively. . .

Confidence Intervals 00000

The Central Limit Theorem

Theorem

Suppose an SRS of size n is drawn from a population with mean μ and standard deviation σ . When n is large, the sample mean \bar{x} is approximately Normally distributed, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.

A proof of the CLT requires more advanced techniques in probability (STA 335/336). But intuitively. . .

- A sample mean is obtained by adding together INDEPENDENT values from the population.
- In order to get a very large or very small value, nearly ALL of the independent values need to be extreme.
- To get a moderate value, many can be extreme in the opposite direction, or many can be moderate (or several variations in between).
- There are more ways to obtain moderate values in an average than to obtain extreme values

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00000000●0		000000000	00000

Implications for Statistics

• **Regardless** of the underlying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means decreases as sample size increases

The Central Limit Theorem 00000000●0	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals

Implications for Statistics

- Regardless of the underlying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means decreases as sample size increases
- We can use properties of the Normal distribution to determine probabilities of obtaining extreme sample statistics

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
00000000●0		000000000	00000

Implications for Statistics

- **Regardless** of the underlying population distribution, when sample size is large, the distribution of sample means is predictable, and variance in means decreases as sample size increases
- We can use properties of the Normal distribution to determine probabilities of obtaining extreme sample statistics
- Statistical inference can be performed using theoretical density functions, in addition to using simulation and bootstrapping

The Central Limit Theorem 000000000	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals

We have two ways of making confidence intervals / performing hypothesis tests:

• Previously, we...

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.
- But now, using the Central Limit Theorem, we can...

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.
- But now, using the Central Limit Theorem, we can...
 - Construct confidence intervals using the quantiles of the Normal distribution, which can be transformed into bounds for the confidence intervals.

Confidence Intervals 00000

Theory vs Simulation Methods

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.
- But now, using the Central Limit Theorem, we can...
 - Construct confidence intervals using the quantiles of the Normal distribution, which can be transformed into bounds for the confidence intervals.
 - Perform hypothesis tests by obtaining p-values from probabilities in the Normal distribution.

Confidence Intervals 00000

Theory vs Simulation Methods

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.
- But now, using the Central Limit Theorem, we can...
 - Construct confidence intervals using the quantiles of the Normal distribution, which can be transformed into bounds for the confidence intervals.
 - Perform hypothesis tests by obtaining p-values from probabilities in the Normal distribution.
- Why learn two methods?

Confidence Intervals

Theory vs Simulation Methods

- Previously, we...
 - Constructed confidence intervals by approximating the sampling distribution through bootstrapping, used percentile method to get interval bounds.
 - Performed hypothesis tests by creating the null distribution through randomization, calculating p-values as proportions of extreme null statistics.
- But now, using the Central Limit Theorem, we can...
 - Construct confidence intervals using the quantiles of the Normal distribution, which can be transformed into bounds for the confidence intervals.
 - Perform hypothesis tests by obtaining p-values from probabilities in the Normal distribution.
- Why learn two methods?
 - The Theory-based method works best when modeling assumptions are true
 - Simulation-based methods can perform well in a variety of circumstances, but sometimes lack precision; they also require access to computing technology

Confidence Intervals 00000

Section 2

Inference for a Single Proportion

The Sampling Distribution for Sample Proportion

• Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.

The Sampling Distribution for Sample Proportion

- Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.
- Suppose we randomly choose a single observation from a population, and define a random variable X to be 1 if the observation is an A, and 0 if it is a B.

The Sampling Distribution for Sample Proportion

- Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.
- Suppose we randomly choose a single observation from a population, and define a random variable X to be 1 if the observation is an A, and 0 if it is a B.
 - The mean of X is p, and the standard deviation of X is $\sqrt{p(1-p)}$

The Sampling Distribution for Sample Proportion

- Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.
- Suppose we randomly choose a single observation from a population, and define a random variable X to be 1 if the observation is an A, and 0 if it is a B.
 - The mean of X is p, and the standard deviation of X is $\sqrt{p(1-p)}$
- If we instead take an SRS of size *n* from the population, we can view the sample proportion \hat{p} as a sample mean:

Hypothesis Tests

The Sampling Distribution for Sample Proportion

- Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.
- Suppose we randomly choose a single observation from a population, and define a random variable X to be 1 if the observation is an A, and 0 if it is a B.
 - The mean of X is p, and the standard deviation of X is $\sqrt{p(1-p)}$
- If we instead take an SRS of size *n* from the population, we can view the sample proportion \hat{p} as a sample mean:
 - Suppose each person in the sample has their own binary variable X_i . Then the sum $X_1 + \cdots + X_n$ is the number of A's in the sample, and the mean of the X_i is the proportion of A's.

Hypothesis Tests

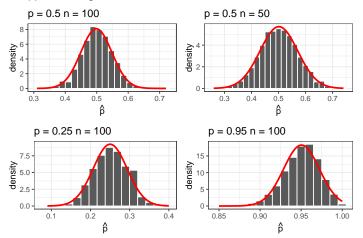
The Sampling Distribution for Sample Proportion

- Consider a population variable that takes only two levels: A and B. Let p be the proportion of A's in the population.
- Suppose we randomly choose a single observation from a population, and define a random variable X to be 1 if the observation is an A, and 0 if it is a B.
 - The mean of X is p, and the standard deviation of X is $\sqrt{p(1-p)}$
- If we instead take an SRS of size *n* from the population, we can view the sample proportion \hat{p} as a sample mean:
 - Suppose each person in the sample has their own binary variable X_i . Then the sum $X_1 + \cdots + X_n$ is the number of A's in the sample, and the mean of the X_i is the proportion of A's.
- By the Central Limit Theorem, if *n* is large, then \hat{p} is approximately Normal, with mean *p* and standard deviation $\sqrt{\frac{p(1-p)}{n}}$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	○○●	000000000	00000

Examples

 Below are the sampling distributions for p̂ for a variety of values of p and n, along with the approximating Normal curve:



Section 3

Hypothesis Tests

Prof. Wells

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	OOO	0●0000000	00000
z-Scores			

$$z = \frac{x - \mu}{SE}$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests ○●○○○○○○○	Confidence Intervals

- z-Scores
 - The **z-score** for a statistic x with standard error SE and mean μ is

$$z = \frac{x - \mu}{SE}$$

• A *z*-score tells us how extreme an observed statistic is (i.e. how far it is from its mean), relative to its standard deviation.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		○●○○○○○○○	00000

$$z = \frac{x - \mu}{SE}$$

- A *z*-score tells us how extreme an observed statistic is (i.e. how far it is from its mean), relative to its standard deviation.
 - Positive (negative) z-scores indicate statistics larger (smaller) than the mean

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		0●0000000	00000

$$z = \frac{x - \mu}{SE}$$

- A *z*-score tells us how extreme an observed statistic is (i.e. how far it is from its mean), relative to its standard deviation.
 - Positive (negative) z-scores indicate statistics larger (smaller) than the mean
- For approximately Normally distributed data, 68-95-99.7% of observations are within 1-2-3 standard deviations of their mean.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		0●0000000	00000

$$z = \frac{x - \mu}{SE}$$

- A *z*-score tells us how extreme an observed statistic is (i.e. how far it is from its mean), relative to its standard deviation.
 - Positive (negative) z-scores indicate statistics larger (smaller) than the mean
- For approximately Normally distributed data, 68-95-99.7% of observations are within 1-2-3 standard deviations of their mean.
 - Thus, 68% of observed samples have z-scores between -1 and 1, 95% of samples have z-scores between -2 and 2, and 99.7% of samples have z-scores between -3 and 3.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		○●○○○○○○○	00000

• The z-score for a statistic x with standard error SE and mean μ is

$$z = \frac{x - \mu}{SE}$$

- A *z*-score tells us how extreme an observed statistic is (i.e. how far it is from its mean), relative to its standard deviation.
 - Positive (negative) z-scores indicate statistics larger (smaller) than the mean
- For approximately Normally distributed data, 68-95-99.7% of observations are within 1-2-3 standard deviations of their mean.
 - Thus, 68% of observed samples have z-scores between -1 and 1, 95% of samples have z-scores between -2 and 2, and 99.7% of samples have z-scores between -3 and 3.
- Suppose a statistic X is approximately Normal with mean μ and standard deviation SE. Then

$$Z = \frac{X - \mu}{SE}$$

is approximately standard Normal (mean of 0, st. dev. of 1).

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	00€000000	00000
Hypothesis Tests			

By the central limit theorem, if $H_0: p = p_0$ is true, then for large n, \hat{p} is approximately Normal, with the standard error

$$SE(\hat{p}) = \sqrt{rac{p_0(1-p_0)}{n}}$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00●000000	00000

Hypothesis Tests

By the central limit theorem, if $H_0: p = p_0$ is true, then for large n, \hat{p} is approximately Normal, with the standard error

$$SE(\hat{p}) = \sqrt{rac{p_0(1-p_0)}{n}}$$

Theorem

To test $H_0: p = p_0$ against $H_a: p \neq p_0$ (or the one-sided alternative) we use the standardized test statistic

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

If n is large enough so that both $n\hat{p}$ and $n(1-\hat{p})$ are at least 10, then the p-value for the test is computed using the standard Normal distribution.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000●00000	00000

• Recall that the *p*-value of a sample is the probability of obtaining a sample more extreme than the observed sample, if the null hypothesis were true.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000●00000	00000

- Recall that the *p*-value of a sample is the probability of obtaining a sample more extreme than the observed sample, if the null hypothesis were true.
- To obtain the *p*-value of an observed sample \hat{p} , we first calculate the corresponding *z*-score:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 00000000	Confidence Intervals 00000

- Recall that the *p*-value of a sample is the probability of obtaining a sample more extreme than the observed sample, if the null hypothesis were true.
- To obtain the *p*-value of an observed sample \hat{p} , we first calculate the corresponding *z*-score:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

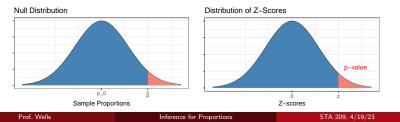
• The *p*-value of the sample is the probability of obtaining a sample with *z*-score more extreme than the observed *z*-score.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000●00000	00000

- Recall that the *p*-value of a sample is the probability of obtaining a sample more extreme than the observed sample, if the null hypothesis were true.
- To obtain the *p*-value of an observed sample \hat{p} , we first calculate the corresponding *z*-score:

$$\mathsf{z} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- The *p*-value of the sample is the probability of obtaining a sample with *z*-score more extreme than the observed *z*-score.
- By the Central Limit Theorem, these *z*-scores are approximately *standard* Normal. We can compute desired probabilities using the pnorm() function in R.



Inference for a Single Proportion

Hypothesis Tests

Confidence Intervals 00000

Taste Test

• Are these the same?

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	00000€000	00000
Taste Test			

• In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00000●000	00000

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00000●000	00000

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.
- *Null Hypothesis:* flavors cannot be distinguished.
- Alternative Hypothesis: flavors can be distinguished to some extent.

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.
- *Null Hypothesis:* flavors cannot be distinguished.
- Alternative Hypothesis: flavors can be distinguished to some extent.
- Let *p* denote the true proportion of the population who can correctly identify the cup that is different.

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.
- *Null Hypothesis:* flavors cannot be distinguished.
- Alternative Hypothesis: flavors can be distinguished to some extent.
- Let *p* denote the true proportion of the population who can correctly identify the cup that is different.
 - If *H*₀ is true, what is the corresponding value of *p*?

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.
- *Null Hypothesis:* flavors cannot be distinguished.
- Alternative Hypothesis: flavors can be distinguished to some extent.
- Let *p* denote the true proportion of the population who can correctly identify the cup that is different.
 - If H₀ is true, what is the corresponding value of p?
 - If H_a is true, how does the true value of p compare to the null value?

- In a previous year, intro stat students participated in an experiment to determine whether they can distinguish between two different flavors of carbonated water.
 - Each student was provided 3 cups; 2 of the cups had the same flavor, and the other cup had a different flavor. Students were asked to identify the cup that was different.
- *Null Hypothesis:* flavors cannot be distinguished.
- Alternative Hypothesis: flavors can be distinguished to some extent.
- Let *p* denote the true proportion of the population who can correctly identify the cup that is different.
 - If H₀ is true, what is the corresponding value of p?
 - If H_a is true, how does the true value of p compare to the null value?

$$H_0: p = \frac{1}{3}$$
 $H_a: p > \frac{1}{3}$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000€00	00000
Taste Test Results			

- Of 59 students who performed experiment, 29 students correctly identified the different cup
 - Our sample statistic is $\hat{p} = \frac{29}{59} = 0.49$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000●00	00000

Taste Test Results

- Of 59 students who performed experiment, 29 students correctly identified the different cup
 - Our sample statistic is $\hat{p} = \frac{29}{59} = 0.49$
- If H_0 is true, the standard error for \hat{p} is

$$SE(\hat{p}) = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.33(1-0.33)}{59}} = 0.061$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000●00	Confidence Intervals 00000

Taste Test Results

- Of 59 students who performed experiment, 29 students correctly identified the different cup
 - Our sample statistic is $\hat{p} = \frac{29}{59} = 0.49$
- If H_0 is true, the standard error for \hat{p} is

$$SE(\hat{p}) = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.33(1-0.33)}{59}} = 0.061$$

• The z-score for \hat{p} is therefore

$$z = \frac{\hat{p} - p_0}{SE} = \frac{0.49 - 0.33}{0.061} = 2.578$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000●00	00000

Taste Test Results

- Of 59 students who performed experiment, 29 students correctly identified the different cup
 - Our sample statistic is $\hat{p} = \frac{29}{59} = 0.49$
- If H_0 is true, the standard error for \hat{p} is

$$SE(\hat{p}) = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.33(1-0.33)}{59}} = 0.061$$

• The z-score for \hat{p} is therefore

$$z = \frac{\hat{p} - p_0}{SE} = \frac{0.49 - 0.33}{0.061} = 2.578$$

- That is, the observed \hat{p} was 2.5 standard errors above the mean.
- This seems unlikely to occur, if the null hypothesis were true (remember, 95% of all observations are within 2 standard errors of mean)

The Central Limit Theorem 0000000000	Inference for a Single Proportion 000	Hypothesis Tests 0000000●0	Confidence Intervals 00000
Calculate P-Value			

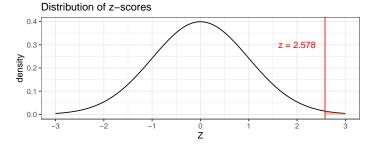
• If H_0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	0000000€0	00000
Calculate P-Value			

- If H_0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
 - The p-value is the probability that a standard Normal variable is larger than z = 2.578

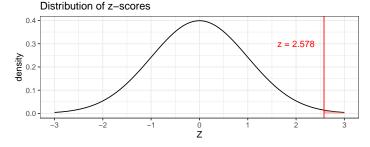
The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	0000000€0	00000
Calculate P-Value			

- If H_0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
 - The p-value is the probability that a standard Normal variable is larger than z = 2.578



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	0000000€0	00000
Calculate P-Value			

- If H_0 is true, the z-score should be Normally distributed, with mean 0 and st. dev.
 - The p-value is the probability that a standard Normal variable is larger than z = 2.578



• The exact p-value is

1-pnorm(q=2.578, mean = 0, sd = 1)

[1] 0.0049687

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	00000000●	00000
Conclusions			

• If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	00000000●	00000
Conclusions			

- If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.
 - Moreover, we would observe a sample proportion greater than or equal to 49% only 0.5% of the time (p-value = 0.0049687)

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	00000000●	00000
Conclusions			

- If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.
 - Moreover, we would observe a sample proportion greater than or equal to 49% only 0.5% of the time (p-value = 0.0049687)
- At a liberal significance level of $\alpha = 0.1$, since p-value $< \alpha$, we reject the null hypothesis in favor of the alternative.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00000000●	00000

Conclusions

- If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.
 - Moreover, we would observe a sample proportion greater than or equal to 49% only 0.5% of the time (p-value = 0.0049687)
- At a liberal significance level of $\alpha = 0.1$, since p-value $< \alpha$, we reject the null hypothesis in favor of the alternative.
 - This experiment provides evidence that the two flavors are indeed distinguishable

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00000000●	00000

Conclusions

- If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.
 - Moreover, we would observe a sample proportion greater than or equal to 49% only 0.5% of the time (p-value = 0.0049687)
- At a liberal significance level of $\alpha = 0.1$, since p-value $< \alpha$, we reject the null hypothesis in favor of the alternative.
 - This experiment provides evidence that the two flavors are indeed distinguishable
- How does this compare to the simulation results?

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 00000000●	Confidence Intervals 00000

Conclusions

- If the two types of carbonated water were indistinguishable, we would expect that approximately 33% of students would identify the correct cup due by random guessing.
 - Moreover, we would observe a sample proportion greater than or equal to 49% only 0.5% of the time (p-value = 0.0049687)
- At a liberal significance level of α = 0.1, since p-value < α, we reject the null hypothesis in favor of the alternative.
 - This experiment provides evidence that the two flavors are indeed distinguishable
- How does this compare to the simulation results?

```
set.seed(48)
lacroix %% specify(response = correct, success = "yes") %>%
hypothesize(null = "point", p = 1/3) %>%
generate(reps = 5000, type = "simulate") %>%
calculate(stat = "prop") %>%
get_p_value(obs_stat = .5, direction = "right")
```

```
## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.0038
```

Hypothesis Tests 000000000 Confidence Intervals

Section 4

Confidence Intervals

The Central Limit Theorem 0000000000	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals ○●○○○
Critical Values			

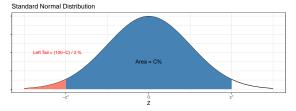
• The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	0●000
Critical Values			

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution

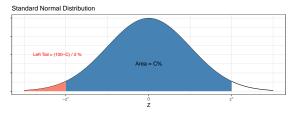
The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	0●000
Critical Values			

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C+\frac{1-C}{2}$ percentile of the standard Normal distribution



The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	0●000
Critical Values			

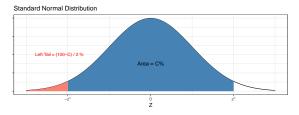
- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C + \frac{1-C}{2}$ percentile of the standard Normal distribution



• The critical value for 95% confidence is the $95 + \frac{100-95}{2} = 97.5$ percentile

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	O●000
Critical Values			

- The **critical value** z^* for a C% confidence interval is the value so that C% of area is between $-z^*$ and z^* in the standard Normal distribution
 - That is, the critical value of C% confidence is the $C + \frac{1-C}{2}$ percentile of the standard Normal distribution



• The critical value for 95% confidence is the $95 + \frac{100-95}{2} = 97.5$ percentile qnorm(.975, mean = 0, sd = 1) # The 97.5 percentile is the .975 quantile

[1] 1.959964

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		00000000	00●00

If the sample statistic is approximately Normal, the C% confidence interval is

 $\mathrm{statistic} \pm z^* \cdot SE$

where z^* is the critical value confidence and SE is the standard error of the statistic

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000000	00●00

If the sample statistic is approximately Normal, the C% confidence interval is

 $\mathrm{statistic} \pm z^* \cdot SE$

where z^* is the critical value confidence and SE is the standard error of the statistic

• The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 00●00

If the sample statistic is approximately Normal, the C% confidence interval is

statistic $\pm z^* \cdot SE$

where z^* is the critical value confidence and SE is the standard error of the statistic

- The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.
 - But since we don't know p, we estimate it in the SE formula with \hat{p} :

$$SE pprox \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 00●00

If the sample statistic is approximately Normal, the C% confidence interval is

statistic $\pm z^* \cdot SE$

where z^* is the critical value confidence and SE is the standard error of the statistic

- The standard error for a sample proportion \hat{p} is $SE = \sqrt{\frac{p(1-p)}{n}}$.
 - But since we don't know p, we estimate it in the SE formula with p̂:

$$SE \approx \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Theorem

Suppose an SRS of size n is collected from a population with parameter p. If n is large enough so that both $n\hat{p}$ and $n(1 - \hat{p})$ are at least 10, then the confidence interval for p is

$$\hat{p} \pm z^* \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

The Central Limit Theorem 0000000000	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals ○○○●○

- Taste Test Continued
 - Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 000●0

- Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.
 - Create a 90% confidence interval for this parameter.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 00000000	Confidence Intervals ○○○●○

- Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.
 - Create a 90% confidence interval for this parameter.
- As before, our sample statistic is $\hat{p} = \frac{29}{59}$.

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000000	000●0

- Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.
 - Create a 90% confidence interval for this parameter.
- As before, our sample statistic is $\hat{p} = \frac{29}{59}$.
- The critical value for a 90% confidence interval is the number z^* so that 90% area is between $-z^*$ and z^* . It is the 0.95 **quantile**

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 000●0

- Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.
 - Create a 90% confidence interval for this parameter.
- As before, our sample statistic is $\hat{p} = \frac{29}{59}$.
- The critical value for a 90% confidence interval is the number z^* so that 90% area is between $-z^*$ and z^* . It is the 0.95 **quantile**

qnorm(p = .95, mean = 0, sd = 1)

[1] 1.644854

- Suppose we are interested in estimating the value of *p*, the proportion of the population who will correctly identify the different cup.
 - Create a 90% confidence interval for this parameter.
- As before, our sample statistic is $\hat{p} = \frac{29}{59}$.
- The critical value for a 90% confidence interval is the number z* so that 90% area is between -z* and z*. It is the 0.95 quantile

qnorm(p = .95, mean = 0, sd = 1)

[1] 1.644854

• The standard error for \hat{p} is

$$SE(\hat{p}) \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.49(1-0.49)}{59}} = 0.065$$

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000	000	000000000	0000●
An Example			

• The theory-based confidence interval takes the form

 $\hat{p}\pm z^*\cdot SE$

The Central Limit Theorem 0000000000	Inference for a Single Proportion	Hypothesis Tests 00000000	Confidence Intervals 0000●

• The theory-based confidence interval takes the form

$$\hat{p} \pm z^* \cdot SE$$

• In this case,

 $0.49 \pm 1.64 \cdot 0.065$ or 0.49 ± 0.1066

The Central Limit Theorem 0000000000	Inference for a Single Proportion	Hypothesis Tests 000000000	Confidence Intervals 0000●

• The theory-based confidence interval takes the form

$$\hat{p} \pm z^* \cdot SE$$

In this case,

 $0.49 \pm 1.64 \cdot 0.065 \qquad {\rm or} \qquad 0.49 \pm 0.1066$

• That is, a plausible range of values for p is 0.38 to 0.60, with confidence 90%.

The Central Limit Theorem 0000000000	Inference for a Single Proportion	Hypothesis Tests 00000000	Confidence Intervals 0000●

• The theory-based confidence interval takes the form

$$\hat{p} \pm z^* \cdot SE$$

In this case,

 $0.49 \pm 1.64 \cdot 0.065 \qquad {\rm or} \qquad 0.49 \pm 0.1066$

- That is, a plausible range of values for p is 0.38 to 0.60, with confidence 90%.
- How does this compare to the bootstrap method?

The Central Limit Theorem	Inference for a Single Proportion	Hypothesis Tests	Confidence Intervals
0000000000		000000000	0000●

• The theory-based confidence interval takes the form

$$\hat{p} \pm z^* \cdot SE$$

In this case,

 $0.49 \pm 1.64 \cdot 0.065 \qquad {\rm or} \qquad 0.49 \pm 0.1066$

• That is, a plausible range of values for p is 0.38 to 0.60, with confidence 90%.

```
• How does this compare to the bootstrap method?
set.seed(84)
lacroix %>% specify(response = correct, success = "yes") %>%
generate(reps=5000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = .9, type = "percentile")
## # A tibble: 1 x 2
```

lower_ci upper_ci
<dbl> <dbl>
1 0.390 0.593