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In this lecture, we will. ..
® Define and explore continuous random variables

® |nvestigate properties of the Normal Distribution

Prof. Wells Continuous Variables and the Normal Distribution STA 209,



Continuous Random Variables

®0000000

Section 1

Continuous Random Variables
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...

® The values of the function are always non-negative
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...
® The values of the function are always non-negative

® The total area under the function is 1
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...
® The values of the function are always non-negative
® The total area under the function is 1

® The area under the density curve on an interval is the probability that the variable is in
that interval.
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The Distribution of a Continuous Variable

® A continuous random variable is one that any value in an interval of real numbers.
Example: the temperature Noyce 2401 at 4pm on 4/12

® Previously, we described the distribution of discrete random variables by listing the
probabilities of taking each possible values.

® But for continuous variables, there are too many possible values to provide a meaningful
probability for each.

® |nstead, we describe the probabilities that continuous variables are in certain ranges of
values, specified by a density curves

® The density curve for a continuous random variable X is the function f so that...
® The values of the function are always non-negative
® The total area under the function is 1

® The area under the density curve on an interval is the probability that the variable is in
that interval.

® Using the language of calculus,

b
P(a<X<b):/ f(x) dx
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e fort >0
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e fort >0

Distribution for time until particle decays
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e fort >0

Distribution for time until particle decays
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T
® The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = [ 2e™2 dt =
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e fort >0

Distribution for time until particle decays

2.0+
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Density
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T
® The probability that it takes between 0.5 and 1.5 seconds to decay is the area under
the curve between 0.5 and 1.5. P(0.5 < T < 1.5) = [’ 2e™2' dt = 0.34
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® |nstead, we use the integral from calculus to define the mean and variance:

E[X] = / xf(x)dx  Var(X) = / (x — w)2f(x)dx  SD(X) = /Var(X)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® |nstead, we use the integral from calculus to define the mean and variance:

E[X] = [ xf(x)dx Var(X) = /(X — p)?f(x) dx SD(X) = 4/ Var(X)

® These integrals are tools to meaningfully average infinitely many values (but we won't
compute any integrals in this class)
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Mean and Standard Deviation for Continuous Variables

® Just as with discrete random variables, we can define the mean, variance and standard
deviations of continuous variables.

® But we cannot use the same definition as before (the sum of values, weighted by the
probability of each value)

® Note that for any real number ¢, P(X = ¢) = 0. (Why?)

® |nstead, we use the integral from calculus to define the mean and variance:

E[X] = [ xf(x)dx Var(X) = /(X — p)?f(x) dx SD(X) = 4/ Var(X)

® These integrals are tools to meaningfully average infinitely many values (but we won't
compute any integrals in this class)

® As with discrete variables, the mean of a continuous variables represents its typical
value. The standard deviation represents the typical size of deviations from the mean.
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e* for t >0

Distribution for time until particle decays

2.0+
E[T] = 1/2
1.5+

SD(T) = 1/2
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0
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Density Curve

® The density curve for the number of seconds T until a radioactive particle decays is:

f(t) =2e* for t >0

Distribution for time until particle decays

2.0+
E[T] = 1/2
1.5+
g SD(T) = 1/2
c 1.0+
[
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05- x
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o T
e Th lue of T i !
e mean value o Is E[T]:/ t-2e*2tdt:§

0

® The variance and standard deviation of T are

Var(T):/oo (t_%)2~2672tdt:% SD(T):\/Vari(T):%
0
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam
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0.04 4

Probability

0.02 4

0.00 1

50 60 70 80 90 1(‘)0
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Using Densities for Discrete Variables

If a discrete variable takes a large number of values which are close together, we can often
approximate it using a continuous variable.

® Suppose 500 students take a standardized exam, with mean 75 points. The
distribution for the score S of a randomly chosen student is:

Scores for 500 students on an exam

0.08 1

Probability
o o
o o
S (2]

o
o
R

0.00 1

5‘0 6‘0 7‘0 8‘0 9‘0 1(‘)0
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Section 2

The Normal Distribution
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The Normal Distribution

® The general Normal density curve with mean p and standard deviation o is given by
the formula

1 C(x— o . .
f(x)= ——e (x=p)?/2 Don’t memorize this

V2mo?

Prof. Wells Continuous Variables and the Normal Distribution STA 209,



The Normal Distribution
O@000000000000

The Normal Distribution

® The general Normal density curve with mean p and standard deviation o is given by
the formula

1 —(x—nu)2/2
f(x) = ———e (x71)7/20 Don’t memorize this
V2mwo?
The Normal Distribution

0.4

0.34
2
E
T 0.2
=
a

0.14

0.0
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.

Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 47
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Normal Probabilities

Recall that for a random variable which has a continuous distribution, we find probabilities
by looking at areas under the density curve.
Suppose X is Normally distributed with mean 2 and standard deviation 1. What is the
probability that X is between 3 and 47

The Normal Distribution

0.4+

o
w
\

Prob = 0.14

Probability
o
N

o
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L
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

® For example, the following code computes the area left of 1.5 in the Normal

distribution with mean 0 and standard deviation 1:
pnorm( 1.5 , o, 1)

## [1] 0.9331928
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Calculating Normal Probabilities in R

How do we actually find areas under the Normal density curve?

® R has a built-in function for computing cummulative probabilites under Normal
densities: pnorm(q =... , mean =... , sd =... )

® For example, the following code computes the area left of 1.5 in the Normal

distribution with mean 0 and standard deviation 1:
pnorm(q =1.5 , mean =0 , sd =1 )

## [1] 0.9331928

The Normal Distribution

0.4+

Probability
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i ?

o
o
L

0.04
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

® Answer: By computing two cumulative areas and subtracting the results!
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?

® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.
pnorm( 1.5, 0, 1 ) - pnorm( -.25 , 0, 1)

## [1] 0.5318991
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.

pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution

0.4+

Probability
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L
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.

pnorm( 1.5, 0, 1 ) - pnorm( -.25 , 0, 1)

## [1] 0.5318991
The Normal Distribution

0.4+

o
w

Probability
o
N

Area = 0.40

o
[
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Finding Areas of General Regions under Normal curve

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.

pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution
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Area =0.93 - 0.40

Probability
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L
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Finding Areas of General Regions

The pnorm function lets us compute cumulative areas (i.e. all area to the left of a given
value). But how do we compute the area between two values?
® Answer: By computing two cumulative areas and subtracting the results!

Find the area between -.25 and 1.5 under the Normal density with mean 0 and standard
deviation 1.

pnorm(q =1.5 , mean =0 , sd =1 ) - pnorm(q = -.25 , mean =0 , sd =1 )

## [1] 0.5318991
The Normal Distribution
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.

The Normal Distribution

0.4+

Probability
o o
i L

o
[
L

0.0
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.
The Normal Distribution

0.4+

Probability
o o
i L

o
[
L

0.0

-3 -2 -1 0 ? 1 2 3

® That is, we want to find the .75 quantile (i.e. the 75th percentile)
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.
The Normal Distribution

0.4+

Probability
o o
i L

o
[
L

0.0

-3 -2 -1

® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! gqnorm(p =... , mean =... ,

Continuous Variables and the Normal Distribution
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.
The Normal Distribution

0.4+

Probability
o o
i L

o
[
L

0.0

-3 -2 -1 0

® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! gqnorm(p =... , mean =... ,
gnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Finding Quantiles

Suppose we instead have the opposite problem: We want to FIND the value of X with a
given cumulative area.
The Normal Distribution

0.4+

Probability
o o
i L

o
[
L

0.0

® That is, we want to find the .75 quantile (i.e. the 75th percentile)

R has a built-in function for that too! gqnorm(p =... , mean =... ,
gnorm(p =.75 , mean =0 , sd =1 )

## [1] 0.6744898
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Scale and Translation Invariance

® Consider a Normal variable X with x = 0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.
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Scale and Translation Invariance

® Consider a Normal variable X with x = 0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution

0.84

o
=

Probability
o
-

Y
0.2
X
0.0
2 0 2
X
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Scale and Translation Invariance

® Consider a Normal variable X with x = 0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution

0.84

o
=

Probability
o
=

Y
0.2
X
0.0
2 0 2
X

® The distributions for X and Y have different means and different heights and
widths. ..

® But otherwise have identitical shapes!
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Scale and Translation Invariance

® Consider a Normal variable X with x = 0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution of X
0.44

o
w

Probability
o
o

X
0.1
0.0
-2 0 2
X

® The distributions for X and Y have different means and different heights and
widths. ..

® But otherwise have identitical shapes!
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Scale and Translation Invariance

® Consider a Normal variable X with x = 0 and o = 1, and another Normal variable Y
with mean p =2 and o = .25.

The Normal Distribution of X
0.84

o
=

Probability
o
=

Y
0.2
0.0
1 2 3
X

® The distributions for X and Y have different means and different heights and
widths. ..

® But otherwise have identical shapes!
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z = % is a Normal random variable with mean 0 and standard deviation 1.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z = % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then

Z = % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.
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Location-Scale Transformations

The previous example suggest that if we shift and rescale a Normal random variable, we
should still get a Normal random variable

Suppose X is a Normal random variable with mean p and standard deviation o. Then
Z = % is a Normal random variable with mean 0 and standard deviation 1.

The Normal variable with mean 0 and standard deviation 1 is given a special name: the
standard Normal.

The process of subtracting off the mean from a random variable and dividing by the
standard deviation is called standardizing.

It's often useful to standardize a variable so that we only need to consider a single density
function (the standard Normal density) rather than many (one for each choice of i and o)
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