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Conditional Probability Random Variables

Outline

In this lecture, we will. . .

• Investigate Bayes Rule for conditional probabilities
• Define and investigate random variables
• Compute the mean and standard deviation of random variables
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Section 1

Conditional Probability
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Conditional Probability Random Variables

Conditional Probability

• The conditional probability of an event A given another event B is

P(A|B) =
P(A and B)

P(B)

Theorem (General Multiplication Rule)
For any events A and B,

P(A and B) = P(A|B)P(B) = P(B|A)P(A)
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Conditional Probability Random Variables

Conditioning and Independence

• We say that two events are independent if knowing that one occurs doesn’t change
the probability that the other occurs

Theorem (Criteria for Independence)
Two events A and B are independent exactly when

P(A|B) = P(A) and P(B|A) = P(B)

• Note! Saying that two events are independent is not the same as saying they are
disjoint.

• Disjoint events cannot simultaneously occur; while for independent events, knowing that
one occurs gives no information about whether the other occurs.

• If two events are disjoint, and if you know one has occurred, then you automatically
know the other cannot occur. Disjoint events are as far away from independence as
possible!
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Conditional Probability Random Variables

Multiplication Rule for Independent Events

• The general multiplication rule is simpler in the case when two events are independent:

Theorem (Independent Multiplication Rule)
If events A and B are independent, the

P(A and B) = P(A)P(B)

• Suppose we flip a fair coin twice. What is the probability that both flips are heads?
• Let A be the event that the first flip is heads and B be the event that the second is

heads.
• Since the result of the first flip has no bearing on the second flip, then A and B are

independent.
• Moreover, since we have a fair coin, then P(A) = P(B) = 1

2 and so

P(A and B) = P(A)P(B) =
1
2

·
1
2

=
1
4
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Conditional Probability Random Variables

Practice with Probability

• Suppose we obtain a random sample of 4 Grinnell students: {A, B, C , D} and wish to
form new bootstrap sample. What is the probability that student A is not a member
of the bootstrap sample?

• To create the bootstrap, we sample 4 times with replacement from the original sample.
• In order for A not to be in the bootstrap sample, A must not be selected first, nor

second, nor third, nor fourth.
• To calculate the probability that A is not selected first, we use the complement rule:

P(A not 1st) = 1 − P(A 1st) = 1 −
1
4

=
3
4

• Similarly, the probabilities that A is not 2nd, not 3rd, and not 4th are also 3
4 .

• Since we are sampling with replacement, these 4 events are independent, so. . .

P(A not in bootstrap) =P(A not 1st) · P(A not 2nd) · P(A not 3rd) · P(A not 4th)

=
3
4

·
3
4

·
3
4

·
3
4

=
81
256

≈ 0.32
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Conditional Probability Random Variables

Is conditional probability symmetric?

Consider two events A and B. Is it always true that P(A|B) = P(B|A)?

• Suppose we flip two coins. Let A be the event “the first flip is heads” and let B be
the event “at least one flip is heads”.

• The event B occurs if we get one of HH, HT , TH. So P(B) = 3
4

• The event A occurs if we get one of HT or HH, so P(A) = 1
2 .

• The events A and B both occur if we get one of HT or HH, so P(A and B) = 1
2 .

P(A|B) = P(A and B)
P(B) =

1
2
3
4

= 2
3 P(B|A) = P(A and B)

P(A) =
1
2
1
2

= 1

• Suppose we choose a random car in Iowa. Consider the events “The car is red” and
“The car is a Ferrari”.

• What is P( car is red| car is Ferrari)?
• But what is P( car is Ferrari| car is red)?
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Conditional Probability Random Variables

Bayes’ Rule

To relate P(A|B) and P(B|A), we use the following theorem:

Theorem (Bayes’ Rule)
Let A and B be events.Then

P(A|B) = P(B|A) P(A)
P(B)

• Why is this rule true?
P(A|B)P(B) = P(A and B) = P(B|A)P(A)

• Under what circumstances will P(A|B) = P(B|A)?

if P(A) = P(B), then P(A|B) = P(B|A)
P(A)
P(B)

= P(B|A)

• Under what circumstances will P(A|B) be smaller than P(B|A)?

if P(A) < P(B), then P(A|B) = P(B|A)
P(A)
P(B)

< P(B|A)

Prof. Wells Probability and Random Variables STA 209, 4/10/23 9 / 19
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• Why is this rule true?

P(A|B)P(B) = P(A and B) = P(B|A)P(A)

• Under what circumstances will P(A|B) = P(B|A)?

if P(A) = P(B), then P(A|B) = P(B|A)
P(A)
P(B)

= P(B|A)

• Under what circumstances will P(A|B) be smaller than P(B|A)?

if P(A) < P(B), then P(A|B) = P(B|A)
P(A)
P(B)

< P(B|A)
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Conditional Probability Random Variables

Bayes Rule and P-Values

• Recall: The p-value for a hypothesis test is the probability of obtaining a test statistic
more extreme than the one observed, if the null hypothesis were true.

• In the language of conditional probability:
p-value = P( extreme statistic |H0 is true)

• From the previous slide
P( extreme statistic |H0 is true) ̸= P(H0 is true| extreme statistic )

• We cannot say that the p-value is the probability that the null hypothesis is true.
• Instead, using Bayes Rule

P(H0 is true| extreme statistic ) =
P( extreme statistic |H0 is true)P(H0 is true)

P( extreme statistic )

=p-value ·
P(H0 is true)

P( extreme statistic )

• In general, the value of ratio P(H0 is true)
P( extreme statistic ) is difficult to calculate, and requires

significant prior knowledge about the data generation process.
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Conditional Probability Random Variables

Section 2

Random Variables
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Conditional Probability Random Variables

Definitions

A random variable is a numeric quantity whose value depends on the result of a random
process.

• We use capital letters at the end of the alphabet (W , X , Y , Z) to denote random
variables.

• We use lowercase letters (w , x , y , z) to denote the particular values of a random variable

• We use equations to express events associated to random variables.
• I.e “X = 5” represents the event “The random variable X takes the value 5”.

• Events associated to variables have probabilities of occurring.
• P(X = 5) = .5 means X has 50% probability of taking the value 5.
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Conditional Probability Random Variables

Types of Random Variables

There are two main types of random variables:

1 Discrete variables can take only finitely many different values.

2 Continuous variables can take values equal to any real number in an interval.

• Examples of discrete variables:
• The number of credits a randomly chosen Reed student is taking.
• The number of vegetarians in a random sample of 10 people.
• The results of a coin flip, where 0 indicates Tails and 1 indicates Heads.

• Examples of continuous variables:
• The temperature of my office at a particular time of the day.
• The amount of time it takes a radioactive particle to decay.

• Some discrete variables can be well-described by continuous variables:
• The height of a random person selected from a large population.
• The proportion of heads in a long sequence of coin flips.
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Conditional Probability Random Variables

The Distribution of a Random Variable

• Recall that data variables have distributions, which tell us. . .
• the values the variable takes, and the frequency the variable takes those values.

• But random variables also have distributions, which tell us. . .
• the values the variable can take, and the probability the variable takes those values.

• Suppose I play a casino game, where that the amount of money I win (in cents) has
the following distribution:

value 1 5 10 25
probability .3 .4 .2 .1

• Suppose instead that I have a purse filled with the following 100 coins:

value 1 5 10 25
frequency 30 40 20 10

• Playing the casino game is very similar to drawing a random coin from the purse.
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Conditional Probability Random Variables

Visualizing Discrete Distributions

• We often use bar charts to visualize the distribution of discrete random variables.

• Suppose a fair 6-sided die is rolled 6 times. Let X be the number of 1s rolled. The
distribution of X is given by:

0.0
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Distribution for number of 1's in 6 rolls

• Heights of bars are probabilities
• This is analogous to rescaling a histogram to have heights equal to proportions, rather

than counts
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Conditional Probability Random Variables

Expected Value

The expected value (or mean) of a discrete random variable X is

E [X ] = x1P(X = x1) + x2P(X = x2) + · · · + xnP(X = xn) =
n∑

i=1

xi P(X = xi )

• The expected value of X is the sum of the value X can take, weighted by the
probability it takes those values.

• Suppose we have a data set consisting of values {1, 1, 2, 2, 2, 2, 3, 4, 5, 5}. Let X be a
value chosen from this data set randomly. What is the expected value of X?

E [X ] =1P(X = 1) + 2P(X = 2) + 3P(X = 3) + 4P(X = 4) + 5P(X = 5)

=1
2
10

+ 2
4
10

+ 3
1
10

+ 4
1
10

+ 5
2
10

=
27
10

= 2.7

• But also notice that

E [X ] =
1
10

(2 · 1 + 4 · 2 + 1 · 3 + 1 · 4 + 2 · 5) =
1 + 1 + 2 + 2 + 2 + 2 + 3 + 4 + 5 + 5

10
• The expected value of a random variable is the arithmetic mean of a data set, where

each observation in the data occurs with frequency equal to its probability.
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1 + 1 + 2 + 2 + 2 + 2 + 3 + 4 + 5 + 5

10
• The expected value of a random variable is the arithmetic mean of a data set, where

each observation in the data occurs with frequency equal to its probability.
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Conditional Probability Random Variables

The Law of Large Numbers, again

Previously, we said that by the Law of Large numbers, the proportion of times an outcome
occurs in a long sequence of trials is close to the probability for that outcome.

This is a generalization:

Theorem (The Law of Large Numbers)
Let X be a random variable whose value depends on a random experiment. Suppose the
experiment is repeated n times and let x̄n denote the arithmetic mean of the values of X in
each trial. As n gets larger, the arithmetic mean x̄n approaches the expected value E [X ] of
that variable.
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Conditional Probability Random Variables

A Roll of the Die

Suppose we roll a fair 6-sided die. What is the expected value of the result?

• Suppose we roll the same die 1000 times and keep track of the running arithmetic
mean of the results. . .
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Conditional Probability Random Variables

Variance and Standard Deviation

The variance of a discrete random variable X with mean µ is
Var(X) =(x1 − µ)2P(X = x1) + (x2 − µ)2P(X = x2) + · · · + (xn − µ)2P(X = xn)

=
n∑

i=1

(xi − µ)2P(X = xi )

• The variance of X is the sum the squared deviations of X from its mean µ, weighted
by the corresponding probabilities.

• Variables with low variance tend have values close to the mean, while those with high
variance tend to have values farther from the mean.

• As with data variables, we define the standard deviation of a random variable X to be

SD(X) =
√

Var(X)

• Often, σ2 denotes the variance and σ to denotes the standard deviation of a variable.
• Show that the standard deviation of a variable X which takes value 1 with probability

p and 0 with probability 1 − p is

SD(X) =
√

p(1 − p)
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