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In this lecture, we will. . .

• Discuss bootstrapping as means of approximating the sampling distribution
• Use the bootstrap distribution to create general confidence intervals
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Confidence Interval Review and Conundrum

• We do have one more problem:
• To make a confidence interval, we need the sampling distribution in order to compute

the standard error.
• But in order to visualize the sampling distribution, and compute it’s standard deviation,

we would need to obtain thousands of samples.

• In practice, we just have 1 sample! And if we had the time / funding to obtain
thousands of samples, we could probably just conduct a census of the population.

• Miraculously, it turns out we can assess the variability and shape of the sampling
distribution using just a single sample!

• This process is called Bootstrapping, which we’ll investigate next week!
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Section 1

Bootstrapping
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Bootstrapping

• The term bootstrapping refers to the phrase “to pull oneself up by one’s bootstraps”

• The phrase originated in the 19th century as reference to a ludicrous or impossible feat
• By the mid 20th century, its meaning had changed to suggest a success by one’s own

efforts, without outside help

• Its use in statistics alludes to both interpretations.
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The Bootstrap Trick

The Impossible Task:

• How can we learn about the sampling distribution, if we only have 1 sample?

The “Ludicrous” Solution obtained without outside help:
• Draw repeated samples from the original sample at hand; compute the statistic of

interest for each; plot the resulting distribution

The Main Idea:
• The original sample is relatively similar to the population
• Resampling (with replacement) from the original sample approximates sampling from

the population (without replacement)
• The distribution of sample statistics calculated from resamples should look like the

sampling distribution
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Bootstrapping Visualized
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The Bootstrap Procedure

To generate a bootstrap distribution:

1 Obtain an SRS of size n from the population.

2 Draw a sample of size n with replacement from the original sample (called a
bootstrap sample)

3 Repeat (2) a large number of times (with technology, at least 1000 times)

4 For each bootstrap sample, calculate the appropriate statistic (called the bootstrap
statistic)

5 The collection of the bootstrap statistics form the bootstrap distribution
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Proof of Concept

• Consider a very large deck of cards (5200 cards) with 100 of each standard card.

• Suppose we draw a sample hand of size 25 and calculate the mean value of the hand.
• Since we have the deck of cards, we can look at:

1 The population distribution

2 The single sample’s distribution

3 The sampling distribution for sample means

4 The bootstrap distribution for sample means
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House of Cards
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House of Cards

We can compute some relevant statistics:
Population:

mean_value sd_value
6.538462 3.153211

Sampling Distribution:

mean_xbar sd_xbar
6.55047 0.6162582

Sample:

mean_value sd_value
6.24 3.072458

Bootstrap Distribution:

mean_xbar sd_xbar
6.24119 0.604233
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Section 2

Bootstrapping Example
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Reproduction Rate for Covid-19

When COVID-19 first emerged in early 2020, researchers were interested in estimating the
reproduction rate of this new virus to determine the risk it posed.

• Reproduction Rate is the average number of cases directly generated by one case in
a population where all individuals are susceptible.

• Over the past 3 years, scientists have gathered significant data on the Reproduction
Rate of COVID-19 and its variants.

• But at the start of the pandemic data on the Reproduction Rate was relatively limited.

• Parameter of Interest: Reproduction Rate µ for COVID-19 (original strain)
• Population: Theoretical population of all COVID-19 susceptible individuals
• Sample: 50 individuals infected with COVID-19 in February 2020
• Statistic: Average number of cases x̄ generated by each individual in sample
• Sampling Method: Does this represent an SRS?

• Individuals selected had non-overlapping contact networks (Independence)
• But did each member of the population have equal chance to be selected?
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Reproduction Rate for Covid-19 Sample

• We have a sample (covid) of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects (n_infected)

covid %>% group_by(n_infected) %>%
summarize(number = n())

## # A tibble: 7 x 2
## n_infected number
## <int> <int>
## 1 0 5
## 2 1 13
## 3 2 14
## 4 3 12
## 5 4 4
## 6 5 1
## 7 6 1

x
0

5

10

0 1 2 3 4 5 6
Cases Generated by Each Infected Individual

C
ou

nt

covid %>% summarize(mean_number_infected = mean(n_infected))

## mean_number_infected
## 1 2.08

• Is the true reproduction rate exactly 2.06? Probably not. Instead, we’ll create a confidence
interval to estimate it.
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Bootstrap Reproduction Rate
Create the bootstrap samples:
set.seed(121)
bootstrap_samples <- covid %>%

rep_sample_n(size = 50, replace = TRUE, reps = 5000)

bootstrap_samples

## # A tibble: 250,000 x 3
## # Groups: replicate [5,000]
## replicate id n_infected
## <int> <int> <int>
## 1 1 28 2
## 2 1 12 1
## 3 1 7 1
## 4 1 4 0
## 5 1 9 1
## 6 1 1 0
## 7 1 27 2
## 8 1 39 3
## 9 1 37 3
## 10 1 44 3
## # ... with 249,990 more rows
## # i Use `print(n = ...)` to see more rows

bootstrap_samples %>% group_by(replicate) %>%
summarize(n = n())

## # A tibble: 5,000 x 2
## replicate n
## <int> <int>
## 1 1 50
## 2 2 50
## 3 3 50
## 4 4 50
## 5 5 50
## 6 6 50
## 7 7 50
## 8 8 50
## 9 9 50
## 10 10 50
## # ... with 4,990 more rows
## # i Use `print(n = ...)` to see more rows

• Each bootstrap sample consists of 50 observations sampled with replacement from the
original sample (size = 50)

• We have a total of 5000 bootstrap samples (reps = 5000)
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## 4 4 50
## 5 5 50
## 6 6 50
## 7 7 50
## 8 8 50
## 9 9 50
## 10 10 50
## # ... with 4,990 more rows
## # i Use `print(n = ...)` to see more rows

• Each bootstrap sample consists of 50 observations sampled with replacement from the
original sample (size = 50)

• We have a total of 5000 bootstrap samples (reps = 5000)
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Bootstrap Reproduction Rate

Compute bootstrap statistics:
bootstrap_stats <- bootstrap_samples %>%

group_by(replicate) %>%
summarize(x_bar = mean(n_infected))

## # A tibble: 5,000 x 2
## replicate x_bar
## <int> <dbl>
## 1 1 1.88
## 2 2 2.38
## 3 3 2.24
## 4 4 1.88
## 5 5 1.88
## 6 6 1.6
## 7 7 2.02
## 8 8 2.16
## 9 9 2.22
## 10 10 1.8
## # ... with 4,990 more rows
## # i Use `print(n = ...)` to see more rows

• We now have 5000 sample means based on the bootstrap samples, and can assess their
variability
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Bootstrap Reproduction Rate

Graph the bootstrap distribution:
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• Use the bootstrap distribution to estimate the standard error:
bootstrap_stats %>% summarize(SE = sd(x_bar))

## # A tibble: 1 x 1
## SE
## <dbl>
## 1 0.186
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Confidence Interval for Reproduction Rate

• Our sample reproduction rate was x̄ = 2.04.

• Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.
• Recall that a 95% confidence interval has the form

x̄ ± 2 · SE

• Our 95% confidence interval for the true reproduction rate of COVID-19 is

2.06 ± 2 · 0.186

• Our best guess for the reproduction rate is between 1.688 and 2.432. This method
has a success rate of 95%.

• For reference, this interval matches the one provided by the WHO on 1/23/20.
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Generalized Confidence Intervals

• In the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter

• But suppose we instead want a different success rate for our estimation method
• Or suppose we want to create interval estimates for sampling distributions that are not

bell-shaped

• We can make these modifications again using the bootstrap approximation to the
sampling distribution
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Section 3

General Confidence Intervals
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General Confidence Intervals

General Confidence Intervals
The C% confidence interval for a parameter is an interval estimate that is computed from
sample data by a method that captures the parameter for C% of all samples.
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Review: Percentiles and Quantiles

• For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.

• The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.

• For a number p between 0 and 1, the p quantile of a distribution is the value so that
a proportion p of the data is less than or equal to that value.

• The median is the 0.5 quantile of a distribution, and the 1st/3rd quartiles are the 0.25
and 0.75 quantiles, respectively.
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Quantiles and Percentiles

• By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile
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• But this means that 95% of the data is between the .025 and the .975 quantiles
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Quantiles and Percentiles

• By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile
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• But this means that 95% of the data is between the .025 and the .975 quantiles

• For a sampling distribution that is approximately bell-shaped, the .025 quantile is about
2 · SE below the mean, and the .975 quantile is about 2 · SE above the mean
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• But this means that 95% of the data is between the .025 and the .975 quantiles
• For a sampling distribution that is approximately bell-shaped, the .025 quantile is about

2 · SE below the mean, and the .975 quantile is about 2 · SE above the mean
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The Percentile Method

• Suppose we want to construct a 90% confidence interval for the reproduction rate

• Instead of adding/subtracting 2 ∗ SE , find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values

5% 5%

90%

0

100

200

300

400

1.5 2 2.51.76 2.38
x

y

quantile

0.05

0.95

Bootstrap Distribution

• We can use the quantile function in R to calculate the .05 and .95 quantiles
quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.38
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• Our 90% confidence interval is therefore 1.76 to 2.36
quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.38
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Precision

How can we increase the precision of our confidence interval? That is, decrease the margin
of error of the interval?

• Increase sample size.
• The standard deviation of the sampling distribution decreases as sample size increases.

More sample means are closer to the true parameter

• Decrease confidence level.
• The margin of error is determined by the percentiles. A 95% confidence interval is

formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.
• Decreasing confidence level brings the percentiles closer to the 50th percentile,

decreasing the width of the interval.

• Note that accuracy (i.e. success rate) ̸= precision (i.e. margin of error)
• We can have confidence intervals with high precision and low accuracy, if we have a low

confidence level.
• Similarly, we can have confidence intervals with low precision and high accuracy, if we

use a high confidence level.
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