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In this lecture, we will. ..
® Discuss bootstrapping as means of approximating the sampling distribution

® Use the bootstrap distribution to create general confidence intervals
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Confidence Interval Review and Conundrum

® \We do have one more problem:

® To make a confidence interval, we need the sampling distribution in order to compute
the standard error.

® But in order to visualize the sampling distribution, and compute it’s standard deviation,
we would need to obtain thousands of samples.

® |n practice, we just have 1 sample! And if we had the time / funding to obtain
thousands of samples, we could probably just conduct a census of the population.

® Miraculously, it turns out we can assess the variability and shape of the sampling
distribution using just a single sample!

® This process is called Bootstrapping, which we'll investigate next week!
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Bootstrapping

® The term bootstrapping refers to the phrase “to pull oneself up by one's bootstraps”
® The phrase originated in the 19th century as reference to a ludicrous or impossible feat

® By the mid 20th century, its meaning had changed to suggest a success by one's own
efforts, without outside help
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Bootstrapping

® The term bootstrapping refers to the phrase “to pull oneself up by one's bootstraps”
® The phrase originated in the 19th century as reference to a ludicrous or impossible feat

® By the mid 20th century, its meaning had changed to suggest a success by one's own
efforts, without outside help

® [ts use in statistics alludes to both interpretations.
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The Bootstrap Trick

The Impossible Task:
® How can we learn about the sampling distribution, if we only have 1 sample?
The “Ludicrous” Solution obtained without outside help:

® Draw repeated samples from the original sample at hand; compute the statistic of
interest for each; plot the resulting distribution

The Main Idea:
® The original sample is relatively similar to the population

® Resampling (with replacement) from the original sample approximates sampling from
the population (without replacement)

® The distribution of sample statistics calculated from resamples should look like the
sampling distribution
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Bootstrapping Visualized

Population Bootstrap Samples
With jittered output
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The Bootstrap Procedure

To generate a bootstrap distribution:
@ Obtain an SRS of size n from the population.

® Draw a sample of size n with replacement from the original sample (called a
bootstrap sample)

© Repeat (2) a large number of times (with technology, at least 1000 times)

0O For each bootstrap sample, calculate the appropriate statistic (called the bootstrap
statistic)

@ The collection of the bootstrap statistics form the bootstrap distribution
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® Consider a very large deck of cards (5200 cards) with 100 of each standard card.

® Suppose we draw a sample hand of size 25 and calculate the mean value of the hand.
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Proof of Concept

® Consider a very large deck of cards (5200 cards) with 100 of each standard card.
® Suppose we draw a sample hand of size 25 and calculate the mean value of the hand.
® Since we have the deck of cards, we can look at:

@ The population distribution

® The single sample’s distribution

© The sampling distribution for sample means

O The bootstrap distribution for sample means
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House of Cards
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House of Cards

We can compute some relevant statistics:

Population: Sample:
mean_value sd_value mean_value sd_value
6.538462  3.153211 6.24  3.072458
Sampling Distribution: Bootstrap Distribution:
mean_xbar sd__xbar mean_xbar sd_ xbar
6.55047 0.6162582 6.24119  0.604233
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Bootstrapping Example
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Reproduction Rate for Covid-19

When COVID-19 first emerged in early 2020, researchers were interested in estimating the
reproduction rate of this new virus to determine the risk it posed.
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® Reproduction Rate is the average number of cases directly generated by one case in
a population where all individuals are susceptible.

Prof. Wells Bootstrapping



Bootstrapping Example
0e000000

Reproduction Rate for Covid-19

When COVID-19 first emerged in early 2020, researchers were interested in estimating the
reproduction rate of this new virus to determine the risk it posed.

® Reproduction Rate is the average number of cases directly generated by one case in
a population where all individuals are susceptible.

® Qver the past 3 years, scientists have gathered significant data on the Reproduction
Rate of COVID-19 and its variants.

® But at the start of the pandemic data on the Reproduction Rate was relatively limited.
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Reproduction Rate for Covid-19

When COVID-19 first emerged in early 2020, researchers were interested in estimating the
reproduction rate of this new virus to determine the risk it posed.

® Reproduction Rate is the average number of cases directly generated by one case in
a population where all individuals are susceptible.

® Qver the past 3 years, scientists have gathered significant data on the Reproduction
Rate of COVID-19 and its variants.

® But at the start of the pandemic data on the Reproduction Rate was relatively limited.

® Parameter of Interest: Reproduction Rate y for COVID-19 (original strain)

Population: Theoretical population of all COVID-19 susceptible individuals

Sample: 50 individuals infected with COVID-19 in February 2020

® Statistic: Average number of cases x generated by each individual in sample

Prof. Wells Bootstrapping



Bootstrapping Example
0e000000

Reproduction Rate for Covid-19

When COVID-19 first emerged in early 2020, researchers were interested in estimating the
reproduction rate of this new virus to determine the risk it posed.

® Reproduction Rate is the average number of cases directly generated by one case in
a population where all individuals are susceptible.

® Qver the past 3 years, scientists have gathered significant data on the Reproduction
Rate of COVID-19 and its variants.

® But at the start of the pandemic data on the Reproduction Rate was relatively limited.

® Parameter of Interest: Reproduction Rate y for COVID-19 (original strain)

Population: Theoretical population of all COVID-19 susceptible individuals
Sample: 50 individuals infected with COVID-19 in February 2020

® Statistic: Average number of cases x generated by each individual in sample
® Sampling Method: Does this represent an SRS?
® Individuals selected had non-overlapping contact networks (Independence)

® But did each member of the population have equal chance to be selected?
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Reproduction Rate for Covid-19 Sample

® \We have a sample (covid) of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects (n_infected)
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Reproduction Rate for Covid-19 Sample

® \We have a sample (covid) of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects (n_infected)

covid %>% group_by(n_infected) %>

summarize (number = n())

## # A tibble: 7 x 2 104

## n_infected number

## <int> <int>

## 5

## 13 >

## 14

## 1

## o4 --

##
##

Count

~NOoO O WN e
0D WN PO
o N

Cases Generated by Each Infected Indmdual
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Reproduction Rate for Covid-19 Sample

® \We have a sample (covid) of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects (n_infected)

covid %>% group_by(n_infected) %>

summarize (number = n())

## # A tibble: 7 x 2 104

## n_infected number

## <int> <int>

## 5

## 13 >

## 14

## 12

## 4 o --

€
>
o
1 0 o
2 1
3 2
4 3
5 4
## 6 5 1
#H 7 6 1 Cases Generated by Each Infected Indmdual

covid %>% summarize(mean number infected = mean(n_infected))

## mean_number_infected
## 1 2.08
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Reproduction Rate for Covid-19 Sample

® \We have a sample (covid) of 50 infected individuals and perform contract tracing to
determine how many other individuals each infects (n_infected)

covid %>% group_by(n_infected) %>

summarize (number = n())

## # A tibble: 7 x 2 104

## n_infected number

## <int> <int>

## 5

## 13 >

## 14

## 12

## 4 o --

€
>
o
1 0 o
2 1
3 2
4 3
5 4
## 6 5 1
#H 7 6 1 Cases Generated by Each Infected Indmdual

covid %>% summarize(mean number infected = mean(n_infected))

## mean_number_infected
## 1 2.08

® [s the true reproduction rate exactly 2.06? Probably not. Instead, we'll create a confidence
interval to estimate it.
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Bootstrap Reproduction Rate

Create the bootstrap samples:

set.seed(121)
bootstrap_samples <- covid %>%
rep_sample_n( 50, TRUE, 5000)
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Bootstrap Reproduction Rate

Create the bootstrap samples:

set.seed(121)
bootstrap_samples <- covid %>%
rep_sample_n( 50, TRUE, 5000)

bootstrap_samples

## # A tibble: 250,000 x 3
## # Groups: replicate [5,000]
## replicate id n_infected

## <int> <int> <int>
## 1 1 28 2
##H 2 1 12 1
## 3 1 7 1
## 4 1 4 0
## 5 1 9 1
## 6 1 1 0
##H 7 1 27 2
## 8 1 39 3
## 9 1 37 3
## 10 1 44 3
## # ... with 249,990 more rows
## # i Use “print(n = ...)  to see more rows

Prof. Wells Bootstrapping Math 209,



Bootstrapping Example
[e]e]e] lelele]e]

Bootstrap Reproduction Rate

Create the bootstrap samples:

set.seed(121)
bootstrap_samples <- covid %>%

rep_sample_n( 50, TRUE, 5000)

bootstrap_samples bootstrap_samples %>% group_by(replicate) %>%
## # A tibble: 250,000 x 3 G ern 2 al)

## # Groups: replicate [5,000] ## # A tibble: 5,000 x 2

## replicate id n_infected ## replicate n

## <int> <int> <int> ## <int> <int>

## 1 1 28 2 ## 1 1 50

## 2 1 12 1 ## 2 2 50

## 3 1 7 1 ## 3 3 50

## 4 1 4 0 ## 4 4 50

## 5 1 9 1 ## b 5 50

## 6 1 1 0 ## 6 6 50

## 7 1 27 2 ## 7 7 50

## 8 1 39 3 ## 8 8 50

## 9 1 37 3 ## 9 9 50

## 10 1 44 3 ## 10 10 50

## # ... with 249,990 more rows ## # ... with 4,990 more rows

## # 1 Use “print(n = ...)” to see more rows ## # i Use “print(n = ...)" to see more rows
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Bootstrap Reproduction Rate

Create the bootstrap samples:

set.seed(121)
bootstrap_samples <- covid %>%

rep_sample_n( 50, TRUE,
bootstrap_samples

## # A tibble: 250,000 x 3

## # Groups: replicate [5,000]
## replicate id n_infected
## <int> <int> <int>
## 1 1 28 2
##H 2 1 12 1
## 3 1 7 1
## 4 1 4 0
## 5 1 9 1
## 6 1 1 0
##H 7 1 27 2
## 8 1 39 3
## 9 1 37 3
## 10 1 44 3
## # ... with 249,990 more rows
## # i Use “print(n = ...)  to see more rows

5000)

bootstrap_samples %>% group_by(replicate) %>%
summarize ( n())

## # A tibble: 5,000 x 2

#i# replicate n

## <int> <int>

## 1 1 50

#t 2 2 50

## 3 3 50

## 4 4 50

## 5 5 50

## 6 6 50

##H 7 7 50

## 8 8 50

## 9 9 50

## 10 10 50

## # . with 4,990 more rows
## # i Use “print(n = ...)"” to see more rows

® Each bootstrap sample consists of 50 observations sampled with replacement from the

original sample (size = 50)
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Bootstrap Reproduction Rate

Compute bootstrap statistics:
bootstrap_stats <- bootstrap_samples %>%
group_by(replicate) %>%
summarize ( mean(n_infected))
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Bootstrap Reproduction Rate

Compute bootstrap statistics:

bootstrap_stats <- bootstrap_samples %>%
group_by(replicate) %>%
summarize ( mean(n_infected))

## # A tibble: 5,000 x 2

## replicate x_bar

## <int> <dbl>

## 1 1 1.88

## 2 2 2.38

## 3 3 2.24

## 4 4 1.88

## 5 5 1.88

## 6 6 1.6

##T7 7 2.02

## 8 8 2.16

## 9 9 2.22

## 10 10 1.8

## # ... with 4,990 more rows
## # i Use “print(n = ...)" to see more rows

® We now have 5000 sample means based on the bootstrap samples, and can assess their
variability
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Bootstrap Reproduction Rate

Graph the bootstrap distribution:

Bootstrap Distribution for Reproduction Rate, n = 50
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o III III

0- _--l I.--—f
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Bootstrap Sample Means
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Bootstrap Reproduction Rate

Graph the bootstrap distribution:

Bootstrap Distribution for Reproduction Rate, n = 50
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Bootstrap Sample Means

® Use the bootstrap distribution to estimate the standard error:

bootstrap_stats %>}, summarize(SE = sd(x_bar))

## # A tibble: 1 x 1

## SE
##  <dbl>
## 1 0.186
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.

® Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.
® Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.

® Recall that a 95% confidence interval has the form

x+t2-SE
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.
® Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.

® Recall that a 95% confidence interval has the form

x+t2-SE

Our 95% confidence interval for the true reproduction rate of COVID-19 is

2.06 +=2-0.186
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.
® Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.

® Recall that a 95% confidence interval has the form

x+2-SE
® Qur 95% confidence interval for the true reproduction rate of COVID-19 is
2.06 £2-0.186
[ ]

Our best guess for the reproduction rate is between 1.688 and 2.432. This method
has a success rate of 95%.
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Confidence Interval for Reproduction Rate

® Qur sample reproduction rate was x = 2.04.
® Based on the bootstrap distribution, this statistic has a standard error of SE = 0.186.
® Recall that a 95% confidence interval has the form

x+2-SE

® Qur 95% confidence interval for the true reproduction rate of COVID-19 is

2.06 +=2-0.186

® Our best guess for the reproduction rate is between 1.688 and 2.432. This method
has a success rate of 95%.

® For reference, this interval matches the one provided by the WHO on 1/23/20.

Prof. Wells Bootstrapping Math 209, 3/13/.
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Generalized Confidence Intervals

® |n the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter
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Generalized Confidence Intervals

® |n the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter

® But suppose we instead want a different success rate for our estimation method
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Generalized Confidence Intervals

® |n the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter

® But suppose we instead want a different success rate for our estimation method

® Or suppose we want to create interval estimates for sampling distributions that are not
bell-shaped
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Generalized Confidence Intervals

® |n the previous example, we used the fact that for approximately bell-shaped sampling
distributions, 95% of of sample statistics are within 2 SE of the population parameter

® But suppose we instead want a different success rate for our estimation method

® Or suppose we want to create interval estimates for sampling distributions that are not
bell-shaped

® We can make these modifications again using the bootstrap approximation to the
sampling distribution
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Section 3

General Confidence Intervals
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General Confidence Intervals

General Confidence Intervals

The C% confidence interval for a parameter is an interval estimate that is computed from
sample data by a method that captures the parameter for C% of all samples.
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Review: Percentiles and Quantiles

® For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.
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Review: Percentiles and Quantiles

® For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.

® The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.
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Review: Percentiles and Quantiles

® For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.

® The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.

® For a number p between 0 and 1, the p quantile of a distribution is the value so that
a proportion p of the data is less than or equal to that value.
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Review: Percentiles and Quantiles

® For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.

® The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.
® For a number p between 0 and 1, the p quantile of a distribution is the value so that
a proportion p of the data is less than or equal to that value.

® The median is the 0.5 quantile of a distribution, and the 1st/3rd quartiles are the 0.25
and 0.75 quantiles, respectively.
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Review: Percentiles and Quantiles

® For a number k between 0 and 100, the kth percentile of a distribution is the value
so that k% of the data is less than or equal to that value.

® The median is the 50th percentile of a distribution, and the 1st/3rd quartiles are the
25th and 75th percentiles, respectively.

® For a number p between 0 and 1, the p quantile of a distribution is the value so that
a proportion p of the data is less than or equal to that value.

® The median is the 0.5 quantile of a distribution, and the 1st/3rd quartiles are the 0.25
and 0.75 quantiles, respectively.

Bootstrap Distribution

4001

3004 summary statistic
Q1

2001 I Median
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T
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Quantiles and Percentiles

® By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile

Bootstrap Distribution

400+
3004 quantile
2.5% 2.5%
> 5004 I 0.025
I 0.975
N II II
0- - | | ——
T Y T —
15 1.72 2 2425
X
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Quantiles and Percentiles

® By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile

Bootstrap Distribution

400 1

3004 quantile
2.5% 2.5%
> 5004 I 0.025
I 0.975
N II II
i - | | ——

" T U
15 172 2 2425
X

o

® But this means that 95% of the data is between the .025 and the .975 quantiles
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General Confidence Intervals
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® By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile

Bootstrap Distribution
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15 172 2425
X

quantile
I 0.025
I 0.975

® But this means that 95% of the data is between the .025 and the .975 quantiles
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Quantiles and Percentiles

® By definition, 2.5% of the data is less than the .025 quantile, and 2.5% of the data is
greater than the .975 quantile

Bootstrap Distribution

4004

3001 quantile
2.5% 2.5%
> 5004 I 0.025
I 0.975
N II II
—Em

=]

o

1?5 172 24425
X
® But this means that 95% of the data is between the .025 and the .975 quantiles

® For a sampling distribution that is approximately bell-shaped, the .025 quantile is about
2 - SE below the mean, and the .975 quantile is about 2 - SE above the mean
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The Percentile Method

® Suppose we want to construct a 90% confidence interval for the reproduction rate
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® Suppose we want to construct a 90% confidence interval for the reproduction rate

® Instead of adding/subtracting 2 x SE, find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values
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® Suppose we want to construct a 90% confidence interval for the reproduction rate

® Instead of adding/subtracting 2 x SE, find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values
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The Percentile Method

® Suppose we want to construct a 90% confidence interval for the reproduction rate

® Instead of adding/subtracting 2 x SE, find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values

Bootstrap Distribution
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® We can use the quantile function in R to calculate the .05 and .95 quantiles

quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.38
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The Percentile Method

® Suppose we want to construct a 90% confidence interval for the reproduction rate

® Instead of adding/subtracting 2 x SE, find the 0.05 and .95 quantiles in the bootstrap
distribution. Then 90% of bootstrap sample statistics will be between these values
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® Qur 90% confidence interval is therefore 1.76 to 2.36

quantile(bootstrap_stats$x_bar, c(.05, .95))

## 5% 95%
## 1.76 2.38
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Precision

How can we increase the precision of our confidence interval? That is, decrease the margin
of error of the interval?
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® The standard deviation of the sampling distribution decreases as sample size increases.
More sample means are closer to the true parameter
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How can we increase the precision of our confidence interval? That is, decrease the margin
of error of the interval?

® |ncrease sample size.

® The standard deviation of the sampling distribution decreases as sample size increases.
More sample means are closer to the true parameter

® Decrease confidence level.

® The margin of error is determined by the percentiles. A 95% confidence interval is
formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.

® Decreasing confidence level brings the percentiles closer to the 50th percentile,
decreasing the width of the interval.
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® The margin of error is determined by the percentiles. A 95% confidence interval is
formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.
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decreasing the width of the interval.

® Note that accuracy (i.e. success rate) # precision (i.e. margin of error)
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How can we increase the precision of our confidence interval? That is, decrease the margin
of error of the interval?

® |ncrease sample size.

® The standard deviation of the sampling distribution decreases as sample size increases.
More sample means are closer to the true parameter

® Decrease confidence level.

® The margin of error is determined by the percentiles. A 95% confidence interval is
formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.

® Decreasing confidence level brings the percentiles closer to the 50th percentile,
decreasing the width of the interval.

® Note that accuracy (i.e. success rate) # precision (i.e. margin of error)

® We can have confidence intervals with high precision and low accuracy, if we have a low
confidence level.
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Precision

How can we increase the precision of our confidence interval? That is, decrease the margin
of error of the interval?

® |ncrease sample size.

® The standard deviation of the sampling distribution decreases as sample size increases.
More sample means are closer to the true parameter

® Decrease confidence level.

® The margin of error is determined by the percentiles. A 95% confidence interval is
formed by the 2.5th and 97.5th percentiles in the bootstrap distribution.

® Decreasing confidence level brings the percentiles closer to the 50th percentile,
decreasing the width of the interval.

® Note that accuracy (i.e. success rate) # precision (i.e. margin of error)

® We can have confidence intervals with high precision and low accuracy, if we have a low
confidence level.

® Similarly, we can have confidence intervals with low precision and high accuracy, if we
use a high confidence level.
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