Intro to Sampling

Prof. Wells

Math 209, 3/1/23

Prof. Wells

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Discuss random sampling: the heart of statistics!
- Perform a group sampling activity

Section 1

Sampling

• The distribution of a data set allow us to quantify the shape, center, and spread of the data.

- The distribution of a data set allow us to quantify the shape, center, and spread of the data.
- While a single observation in a data set may appear arbitrary, repeated trials show that outcomes indeed follow prescribed patterns.

- The distribution of a data set allow us to quantify the shape, center, and spread of the data.
- While a single observation in a data set may appear arbitrary, repeated trials show that outcomes indeed follow prescribed patterns.

A Single Observation is Arbitrary

```
Prof. Wells
```

- The distribution of a data set allow us to quantify the shape, center, and spread of the data.
- While a single observation in a data set may appear arbitrary, repeated trials show that outcomes indeed follow prescribed patterns.

But Many Observations are Predictable

```
Prof. Wells
```

• A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.
- A statistic is a numeric summary of a variable in a *sample*. Researchers collect a sample and measure the value of the statistic

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.
- A statistic is a numeric summary of a variable in a *sample*. Researchers collect a sample and measure the value of the statistic
 - The proportion of voters in a sample of size 10 who plan to vote for the candidate.
 - The mean time until failure for 10 randomly selected computer harddrives.

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.
- A statistic is a numeric summary of a variable in a *sample*. Researchers collect a sample and measure the value of the statistic
 - The proportion of voters in a sample of size 10 who plan to vote for the candidate.
 - The mean time until failure for 10 randomly selected computer harddrives.
- Sample statistics serve as our best estimators for the corresponding population parameters.

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.
- A statistic is a numeric summary of a variable in a *sample*. Researchers collect a sample and measure the value of the statistic
 - The proportion of voters in a sample of size 10 who plan to vote for the candidate.
 - The mean time until failure for 10 randomly selected computer harddrives.
- Sample statistics serve as our best estimators for the corresponding population parameters.
- Parameters are fixed values, but usually unknown.

- A **parameter** is a numeric summary of a variable in a *population*. Researchers are often interested in learning the value of parameters. Ex:
 - The proportion of U.S. voters who plan to vote for a particular presidential candidate.
 - The *mean* time until failure for a computer harddrive.
- But it is often prohibitively expensive, impractical, time-consuming, or impossible to perform a census to collect complete information on the population.
- A statistic is a numeric summary of a variable in a *sample*. Researchers collect a sample and measure the value of the statistic
 - The proportion of voters in a sample of size 10 who plan to vote for the candidate.
 - The mean time until failure for 10 randomly selected computer harddrives.
- Sample statistics serve as our best estimators for the corresponding population parameters.
- Parameters are fixed values, but usually unknown.
- Statistics are known, but vary from sample to sample.

• Consider a collection of 10 novels on a bookshelf (*the population*)

##		Title	Pages
##	1	A Game of Thrones	694
##	2	Dune	412
##	3	The Fellowship of the Ring	479
##	4	The Two Towers	352
##	5	The Return of the King	416
##	6	Good Omens	288
##	7	The Name of the Wind	662
##	8	American Gods	465
##	9	Foundation	255
##	10	Hyperion	482

• Consider a collection of 10 novels on a bookshelf (*the population*)

##		Title	Pages
##	1	A Game of Thrones	694
##	2	Dune	412
##	3	The Fellowship of the Ring	479
##	4	The Two Towers	352
##	5	The Return of the King	416
##	6	Good Omens	288
##	7	The Name of the Wind	662
##	8	American Gods	465
##	9	Foundation	255
##	10	Hyperion	482

• The books on the shelf have an average page count (a parameter)

avg_Pages ## 1 450.5

• We could randomly choose 3 books from the shelf (a sample):

##					1	「itle	Pages
##	1			Fou	nda	ation	255
##	2		The	e Two	То	owers	352
##	3	The	Name	of t	he	Wind	662

• We could randomly choose 3 books from the shelf (a sample):

##					1	「itle	Pages
##	1			Fo	ounda	ation	255
##	2		The	e Tw	ιο Τα	owers	352
##	3	The	Name	of	the	Wind	662

- Which have their own mean page count (a statistic):
- ## avg_Pages
- ## 1 423

• We could randomly choose 3 books from the shelf (*a sample*):

##						「itle	Pages
##	1			Fc	ounda	ation	255
##	2		The	e Tv	ιο Το	owers	352
##	3	The	Name	of	the	Wind	662

• Which have their own mean page count (a statistic):

avg_Pages ## 1 423

• Or we could choose 3 other books (a sample)

##						Title	Pages
##	1			Go	bod	Omens	288
##	2		An	ieri	icar	n Gods	465
##	3	The	Fellowship	of	the	e Ring	479

- We could randomly choose 3 books from the shelf (a sample):
- ##
 Title Pages

 ## 1
 Foundation
 255

 ## 2
 The Two Towers
 352

 ## 3 The Name of the Wind
 662
 - Which have their own mean page count (a statistic):

avg_Pages ## 1 423

• Or we could choose 3 other books (a sample)

##						Title	Pages
##	1			Go	bod	Omens	288
##	2		Am	ieri	car	Gods	465
##	3	The	Fellowship	of	the	e Ring	479

• Which will have a new mean page count (a statistic):

avg_Pages

1 410.6667

• There are 120 different samples of size 3 we could choose from a set of 10 books.

- There are 120 different samples of size 3 we could choose from a set of 10 books.
- The collection of all 120 sample means form its own data set:

- There are 120 different samples of size 3 we could choose from a set of 10 books.
- The collection of all 120 sample means form its own data set:

300 400 500 600

Average Page Count in Samples of 3 Books

• Each dot represents the mean page count in a sample of 3 books.

- There are 120 different samples of size 3 we could choose from a set of 10 books.
- The collection of all 120 sample means form its own data set:

300 400 500 600

Average Page Count in Samples of 3 Books

- Each dot represents the mean page count in a sample of 3 books.
 - Most samples have means close to the true mean (450 pages)
 - But other samples are more extreme (averages < 350 or > 550)

Prof. Wells

Intro to Sampling

Average Page Count in Samples of 3 Books

• As a data set, the collection of sample means themselves have a *mean, standard deviation* and a *5-number summary*

Average Page Count in Samples of 3 Books

• As a data set, the collection of sample means themselves have a *mean, standard deviation* and a *5-number summary*

mean sd min q1 median q3 max
1 450 69 298 395 454 500 613

Average Page Count in Samples of 3 Books

• As a data set, the collection of sample means themselves have a *mean, standard deviation* and a *5-number summary*

mean sd min q1 median q3 max
1 450 69 298 395 454 500 613

• The mean tells us the typical value of the statistic in random sample.

Average Page Count in Samples of 3 Books

• As a data set, the collection of sample means themselves have a *mean, standard deviation* and a *5-number summary*

##		mean	sd	min	q1	median	q3	max
##	1	450	69	298	395	454	500	613

- The mean tells us the typical value of the statistic in random sample.
- The standard deviation indicates how the statistic varies from sample to sample.

- Consider a standard deck of 52 playing cards, consisting of...
 - 4 cards each of Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King

- Consider a standard deck of 52 playing cards, consisting of...
 - 4 cards each of Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King
- Assign a point value to each card:
 - Face Cards (Jack, Queen, King) are worth 10
 - Ace is worth 1
 - All numeric cards are worth their printed number.

- Consider a standard deck of 52 playing cards, consisting of...
 - 4 cards each of Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King
- Assign a point value to each card:
 - Face Cards (Jack, Queen, King) are worth 10
 - Ace is worth 1
 - All numeric cards are worth their printed number.

11/14

• The mean, standard deviation and median of point values in the deck are:

mean sd median ## 1 6.5 3.2 7

• The mean, standard deviation and median of point values in the deck are:

```
## mean sd median
## 1 6.5 3.2 7
```

• Note that the distribution of point values is slightly left-skewed (there are a large number of high point cards)

• The mean, standard deviation and median of point values in the deck are:

```
## mean sd median
## 1 6.5 3.2 7
```

- Note that the distribution of point values is slightly left-skewed (there are a large number of high point cards)
- Suppose we draw a hand of 10 cards and compute the average point value of the hand.
 - What is the distribution of average point values across all possible samples?

Activity

- Thoroughly shuffle one of your group's deck of cards.
- **2** Draw 10 cards from the deck (without replacement) to form a sample.
- **3** Compute the mean point value of your hand.
- **4** Write the value of the mean on a sticky note and add to whiteboard.
- **6** Repeat steps 1 4 four additional times, per person.

Discussion

Answer the following questions in your group:

- What appears to be the average value of the sample mean?
- How does this compare to the average point value in the deck of cards?
- Which distribution appears to have more variability: the distribution of sample means or the distribution of point values in the deck?
- How do the shapes of the two distributions compare?
- What are the approximate 1st and 3rd quartiles for the distribution of sample means?
- What does this suggest about the value of most sample means?

Theoretical Sampling Distribution

Distribution of Mean Point Values in Hands of 10 Cards

0

6

Mean Point Value

ż

8

5

4

ġ