
Summarizing with dplyr Data Wrangling

Data Wrangling

Prof. Wells

STA 209, 2/6/23

Prof. Wells Data Wrangling STA 209, 2/6/23 1 / 20

Summarizing with dplyr Data Wrangling

Outline

In this lecture, we will. . .

• Efficiently summarize data with the summarize function
• Discuss data wrangling and survey the dplyr verbs
• Practice decomposing data using the “grammar of wrangling”

Prof. Wells Data Wrangling STA 209, 2/6/23 2 / 20

Summarizing with dplyr Data Wrangling

Outline

In this lecture, we will. . .
• Efficiently summarize data with the summarize function
• Discuss data wrangling and survey the dplyr verbs
• Practice decomposing data using the “grammar of wrangling”

Prof. Wells Data Wrangling STA 209, 2/6/23 2 / 20

Summarizing with dplyr Data Wrangling

Section 1

Summarizing with dplyr

Prof. Wells Data Wrangling STA 209, 2/6/23 3 / 20

Summarizing with dplyr Data Wrangling

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

[1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame

Prof. Wells Data Wrangling STA 209, 2/6/23 4 / 20

Summarizing with dplyr Data Wrangling

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

[1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame

Prof. Wells Data Wrangling STA 209, 2/6/23 4 / 20

Summarizing with dplyr Data Wrangling

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

[1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame

Prof. Wells Data Wrangling STA 209, 2/6/23 4 / 20

Summarizing with dplyr Data Wrangling

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

[1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame

Prof. Wells Data Wrangling STA 209, 2/6/23 4 / 20

Summarizing with dplyr Data Wrangling

The dplyr package

• The dplyr (dee-plier) package provides a set of specialized tools for manipulating
dataframes.

• While dplyr contains many functions (we’ll see at least 6 over the next few days), for
now we begin with just one: summarize (or summarise)

• Previously, we applied functions like mean(), sd() and quantile() to columns of a
data frame to get summary statistics:

mean(biketown$Distance_Miles)

[1] 2.044768

• But it would be nice to have an easy way to store multiple summary statistics in a
data frame

Prof. Wells Data Wrangling STA 209, 2/6/23 4 / 20

Summarizing with dplyr Data Wrangling

The summarize function

The summarize function takes a data frame, applies specified summary functions to 1 or
more columns, and returns a data frame of the results.

library(dplyr)
summarize(

biketown,
Mean_Distance = mean(Distance_Miles),
SD_Distance = sd(Distance_Miles),
Median_StartHour = median(StartHour),
IQR_StartHour = IQR(StartHour)

)

A tibble: 1 x 4
Mean_Distance SD_Distance Median_StartHour IQR_StartHour
<dbl> <dbl> <int> <dbl>
1 2.04 1.95 15 7

• Note that code is separated by line breaks for improved readability
• New column names can be arbitrary (but it’s nice if they are informative)

Prof. Wells Data Wrangling STA 209, 2/6/23 5 / 20

Summarizing with dplyr Data Wrangling

The summarize function

The summarize function takes a data frame, applies specified summary functions to 1 or
more columns, and returns a data frame of the results.
library(dplyr)
summarize(

biketown,
Mean_Distance = mean(Distance_Miles),
SD_Distance = sd(Distance_Miles),
Median_StartHour = median(StartHour),
IQR_StartHour = IQR(StartHour)

)

A tibble: 1 x 4
Mean_Distance SD_Distance Median_StartHour IQR_StartHour
<dbl> <dbl> <int> <dbl>
1 2.04 1.95 15 7

• Note that code is separated by line breaks for improved readability
• New column names can be arbitrary (but it’s nice if they are informative)

Prof. Wells Data Wrangling STA 209, 2/6/23 5 / 20

Summarizing with dplyr Data Wrangling

The summarize function

The summarize function takes a data frame, applies specified summary functions to 1 or
more columns, and returns a data frame of the results.
library(dplyr)
summarize(

biketown,
These = mean(Distance_Miles),
Can = sd(Distance_Miles),
Be = median(StartHour),
Whatever = IQR(StartHour)

)

A tibble: 1 x 4
These Can Be Whatever
<dbl> <dbl> <int> <dbl>
1 2.04 1.95 15 7

• Note that code is separated by line breaks for improved readability
• New column names can be arbitrary (but it’s nice if they are informative)

Prof. Wells Data Wrangling STA 209, 2/6/23 6 / 20

Summarizing with dplyr Data Wrangling

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:
distance_summary <- summarise(biketown,

mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

[1] 2.044768
distance_summary$sd_dist

[1] 1.950804

Prof. Wells Data Wrangling STA 209, 2/6/23 7 / 20

Summarizing with dplyr Data Wrangling

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:
distance_summary <- summarise(biketown,

mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

[1] 2.044768
distance_summary$sd_dist

[1] 1.950804

Prof. Wells Data Wrangling STA 209, 2/6/23 7 / 20

Summarizing with dplyr Data Wrangling

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:

distance_summary <- summarise(biketown,
mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

[1] 2.044768
distance_summary$sd_dist

[1] 1.950804

Prof. Wells Data Wrangling STA 209, 2/6/23 7 / 20

Summarizing with dplyr Data Wrangling

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:
distance_summary <- summarise(biketown,

mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

[1] 2.044768
distance_summary$sd_dist

[1] 1.950804

Prof. Wells Data Wrangling STA 209, 2/6/23 7 / 20

Summarizing with dplyr Data Wrangling

Extending summarize

• The summarize function can be combined with many common R functions that take
a list of values and return a single value:

• mean()
• sd()
• median()

• IQR()
• quantile()
• sum()

• min()
• max()
• n()

• It’s helpful to save the summarize dataframe for later access:
distance_summary <- summarise(biketown,

mean_dist = mean(Distance_Miles),
sd_dist = sd(Distance_Miles))

distance_summary$mean_dist

[1] 2.044768
distance_summary$sd_dist

[1] 1.950804

Prof. Wells Data Wrangling STA 209, 2/6/23 7 / 20

Summarizing with dplyr Data Wrangling

Section 2

Data Wrangling

Prof. Wells Data Wrangling STA 209, 2/6/23 8 / 20

Summarizing with dplyr Data Wrangling

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.

Prof. Wells Data Wrangling STA 209, 2/6/23 9 / 20

Summarizing with dplyr Data Wrangling

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.

Prof. Wells Data Wrangling STA 209, 2/6/23 9 / 20

Summarizing with dplyr Data Wrangling

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.

Prof. Wells Data Wrangling STA 209, 2/6/23 9 / 20

Summarizing with dplyr Data Wrangling

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.

Prof. Wells Data Wrangling STA 209, 2/6/23 9 / 20

Summarizing with dplyr Data Wrangling

What is Data “Wrangling”?

• Wild data often arrives to us messy—BIG, unsorted, redundant, possibly with data
entry/parsing errors.

• Wrangling is a catch-all term for the process of preparing, manipulating, sorting,
relabeling data so it is fit for statistical consumption.

• In addition to tidying a data set, data wrangling also allows us to explore components
of the data.

• Data analysts and survey statisticians spend about 50 − 80% of work-time on data
wrangling.

• As such, it is important to have consistent and efficient tools for the job.

Prof. Wells Data Wrangling STA 209, 2/6/23 9 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated

manipulations.
• These verbs form a “grammar” of Data Manipulation.

• So even if you aren’t using R, they represent the basic components you would think
about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated

manipulations.
• These verbs form a “grammar” of Data Manipulation.

• So even if you aren’t using R, they represent the basic components you would think
about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame

• Verbs can be chained together using a special operator %>% to perform complicated
manipulations.

• These verbs form a “grammar” of Data Manipulation.
• So even if you aren’t using R, they represent the basic components you would think

about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated

manipulations.

• These verbs form a “grammar” of Data Manipulation.
• So even if you aren’t using R, they represent the basic components you would think

about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated

manipulations.
• These verbs form a “grammar” of Data Manipulation.

• So even if you aren’t using R, they represent the basic components you would think
about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

The dplyr Package

• For tidy data frames, most wrangling can be performed by 6 dplyr functions:

1 filter
2 summarize
3 group_by
4 mutate
5 arrange
6 select

• Each verb takes a data frame and returns a data frame
• Verbs can be chained together using a special operator %>% to perform complicated

manipulations.
• These verbs form a “grammar” of Data Manipulation.

• So even if you aren’t using R, they represent the basic components you would think
about when manipulating data.

Prof. Wells Data Wrangling STA 209, 2/6/23 10 / 20

Summarizing with dplyr Data Wrangling

A long time ago, in a galaxy far, far away. . .

Prof. Wells Data Wrangling STA 209, 2/6/23 11 / 20

Summarizing with dplyr Data Wrangling

A long time ago, in a galaxy far, far away. . .

Prof. Wells Data Wrangling STA 209, 2/6/23 11 / 20

Summarizing with dplyr Data Wrangling

Star Wars: The Rise of Skywrangler

We’ll investigate the starwars data set from the dplyr package
head(starwars)

A tibble: 6 x 14
name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
1 Luke Skywal~ 172 77 blond fair blue 19 male mascu~ Tatooi~
2 C-3PO 167 75 <NA> gold yellow 112 none mascu~ Tatooi~
3 R2-D2 96 32 <NA> white,~ red 33 none mascu~ Naboo
4 Darth Vader 202 136 none white yellow 41.9 male mascu~ Tatooi~
5 Leia Organa 150 49 brown light brown 19 fema~ femin~ Aldera~
6 Owen Lars 178 120 brown,~ light blue 52 male mascu~ Tatooi~
... with 4 more variables: species <chr>, films <list>, vehicles <list>,
starships <list>, and abbreviated variable names 1: hair_color,
2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
i Use `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 12 / 20

Summarizing with dplyr Data Wrangling

filter()

filter(starwars, height < 100)

A tibble: 7 x 14
name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
1 R2-D2 96 32 <NA> white,~ red 33 none mascu~ Naboo
2 R5-D4 97 32 <NA> white,~ red NA none mascu~ Tatooi~
3 Yoda 66 17 white green brown 896 male mascu~ <NA>
4 Wicket Syst~ 88 20 brown brown brown 8 male mascu~ Endor
5 Dud Bolt 94 45 none blue, ~ yellow NA male mascu~ Vulpter
6 Ratts Tyere~ 79 15 none grey, ~ unknown NA male mascu~ Aleen ~
7 R4-P17 96 NA none silver~ red, b~ NA none femin~ <NA>
... with 4 more variables: species <chr>, films <list>, vehicles <list>,
starships <list>, and abbreviated variable names 1: hair_color,
2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
i Use `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 13 / 20

Summarizing with dplyr Data Wrangling

filter()

filter(starwars, height < 100)

A tibble: 7 x 14
name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
1 R2-D2 96 32 <NA> white,~ red 33 none mascu~ Naboo
2 R5-D4 97 32 <NA> white,~ red NA none mascu~ Tatooi~
3 Yoda 66 17 white green brown 896 male mascu~ <NA>
4 Wicket Syst~ 88 20 brown brown brown 8 male mascu~ Endor
5 Dud Bolt 94 45 none blue, ~ yellow NA male mascu~ Vulpter
6 Ratts Tyere~ 79 15 none grey, ~ unknown NA male mascu~ Aleen ~
7 R4-P17 96 NA none silver~ red, b~ NA none femin~ <NA>
... with 4 more variables: species <chr>, films <list>, vehicles <list>,
starships <list>, and abbreviated variable names 1: hair_color,
2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
i Use `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 13 / 20

Summarizing with dplyr Data Wrangling

select()

select(starwars, name, height, mass, homeworld)

A tibble: 87 x 4
name height mass homeworld
<chr> <int> <dbl> <chr>
1 Luke Skywalker 172 77 Tatooine
2 C-3PO 167 75 Tatooine
3 R2-D2 96 32 Naboo
4 Darth Vader 202 136 Tatooine
5 Leia Organa 150 49 Alderaan
6 Owen Lars 178 120 Tatooine
7 Beru Whitesun lars 165 75 Tatooine
8 R5-D4 97 32 Tatooine
9 Biggs Darklighter 183 84 Tatooine
10 Obi-Wan Kenobi 182 77 Stewjon
... with 77 more rows
i Use `print(n = ...)` to see more rows

Prof. Wells Data Wrangling STA 209, 2/6/23 14 / 20

Summarizing with dplyr Data Wrangling

select()

select(starwars, name, height, mass, homeworld)

A tibble: 87 x 4
name height mass homeworld
<chr> <int> <dbl> <chr>
1 Luke Skywalker 172 77 Tatooine
2 C-3PO 167 75 Tatooine
3 R2-D2 96 32 Naboo
4 Darth Vader 202 136 Tatooine
5 Leia Organa 150 49 Alderaan
6 Owen Lars 178 120 Tatooine
7 Beru Whitesun lars 165 75 Tatooine
8 R5-D4 97 32 Tatooine
9 Biggs Darklighter 183 84 Tatooine
10 Obi-Wan Kenobi 182 77 Stewjon
... with 77 more rows
i Use `print(n = ...)` to see more rowsProf. Wells Data Wrangling STA 209, 2/6/23 14 / 20

Summarizing with dplyr Data Wrangling

summarize()

summarize(starwars,
Avg_Height = mean(height, na.rm = T),
Median_Height = median(height, na.rm = T))

A tibble: 1 x 2
Avg_Height Median_Height
<dbl> <int>
1 174. 180

Prof. Wells Data Wrangling STA 209, 2/6/23 15 / 20

Summarizing with dplyr Data Wrangling

summarize()

summarize(starwars,
Avg_Height = mean(height, na.rm = T),
Median_Height = median(height, na.rm = T))

A tibble: 1 x 2
Avg_Height Median_Height
<dbl> <int>
1 174. 180

Prof. Wells Data Wrangling STA 209, 2/6/23 15 / 20

Summarizing with dplyr Data Wrangling

group_by()

Link data according to levels of a variable. Usually followed by summarize()

grouped_sw <- group_by(starwars, gender)
summarize(grouped_sw, Avg_Height = mean(height, na.rm = T))

A tibble: 3 x 2
gender Avg_Height
<chr> <dbl>
1 feminine 165.
2 masculine 177.
3 <NA> 181.

Prof. Wells Data Wrangling STA 209, 2/6/23 16 / 20

Summarizing with dplyr Data Wrangling

group_by()

Link data according to levels of a variable. Usually followed by summarize()

grouped_sw <- group_by(starwars, gender)
summarize(grouped_sw, Avg_Height = mean(height, na.rm = T))

A tibble: 3 x 2
gender Avg_Height
<chr> <dbl>
1 feminine 165.
2 masculine 177.
3 <NA> 181.

Prof. Wells Data Wrangling STA 209, 2/6/23 16 / 20

Summarizing with dplyr Data Wrangling

mutate()

mutated_sw <- mutate(starwars, height_ft = height/30.48)
select(mutated_sw, name, height_ft, everything())

A tibble: 87 x 15
name heigh~1 height mass hair_~2 skin_~3 eye_c~4 birth~5 sex gender
<chr> <dbl> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Luke Skywa~ 5.64 172 77 blond fair blue 19 male mascu~
2 C-3PO 5.48 167 75 <NA> gold yellow 112 none mascu~
3 R2-D2 3.15 96 32 <NA> white,~ red 33 none mascu~
4 Darth Vader 6.63 202 136 none white yellow 41.9 male mascu~
5 Leia Organa 4.92 150 49 brown light brown 19 fema~ femin~
6 Owen Lars 5.84 178 120 brown,~ light blue 52 male mascu~
7 Beru White~ 5.41 165 75 brown light blue 47 fema~ femin~
8 R5-D4 3.18 97 32 <NA> white,~ red NA none mascu~
9 Biggs Dark~ 6.00 183 84 black light brown 24 male mascu~
10 Obi-Wan Ke~ 5.97 182 77 auburn~ fair blue-g~ 57 male mascu~
... with 77 more rows, 5 more variables: homeworld <chr>, species <chr>,
films <list>, vehicles <list>, starships <list>, and abbreviated variable
names 1: height_ft, 2: hair_color, 3: skin_color, 4: eye_color,
5: birth_year
i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 17 / 20

Summarizing with dplyr Data Wrangling

mutate()

mutated_sw <- mutate(starwars, height_ft = height/30.48)
select(mutated_sw, name, height_ft, everything())

A tibble: 87 x 15
name heigh~1 height mass hair_~2 skin_~3 eye_c~4 birth~5 sex gender
<chr> <dbl> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
1 Luke Skywa~ 5.64 172 77 blond fair blue 19 male mascu~
2 C-3PO 5.48 167 75 <NA> gold yellow 112 none mascu~
3 R2-D2 3.15 96 32 <NA> white,~ red 33 none mascu~
4 Darth Vader 6.63 202 136 none white yellow 41.9 male mascu~
5 Leia Organa 4.92 150 49 brown light brown 19 fema~ femin~
6 Owen Lars 5.84 178 120 brown,~ light blue 52 male mascu~
7 Beru White~ 5.41 165 75 brown light blue 47 fema~ femin~
8 R5-D4 3.18 97 32 <NA> white,~ red NA none mascu~
9 Biggs Dark~ 6.00 183 84 black light brown 24 male mascu~
10 Obi-Wan Ke~ 5.97 182 77 auburn~ fair blue-g~ 57 male mascu~
... with 77 more rows, 5 more variables: homeworld <chr>, species <chr>,
films <list>, vehicles <list>, starships <list>, and abbreviated variable
names 1: height_ft, 2: hair_color, 3: skin_color, 4: eye_color,
5: birth_year
i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 17 / 20

Summarizing with dplyr Data Wrangling

arrange()

Sort the rows

arrange(starwars,mass)

A tibble: 87 x 14
name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
1 Ratts Tyer~ 79 15 none grey, ~ unknown NA male mascu~ Aleen ~
2 Yoda 66 17 white green brown 896 male mascu~ <NA>
3 Wicket Sys~ 88 20 brown brown brown 8 male mascu~ Endor
4 R2-D2 96 32 <NA> white,~ red 33 none mascu~ Naboo
5 R5-D4 97 32 <NA> white,~ red NA none mascu~ Tatooi~
6 Sebulba 112 40 none grey, ~ orange NA male mascu~ Malast~
7 Dud Bolt 94 45 none blue, ~ yellow NA male mascu~ Vulpter
8 Padmé Amid~ 165 45 brown light brown 46 fema~ femin~ Naboo
9 Wat Tambor 193 48 none green,~ unknown NA male mascu~ Skako
10 Sly Moore 178 48 none pale white NA <NA> <NA> Umbara
... with 77 more rows, 4 more variables: species <chr>, films <list>,
vehicles <list>, starships <list>, and abbreviated variable names
1: hair_color, 2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 18 / 20

Summarizing with dplyr Data Wrangling

arrange()

Sort the rows

arrange(starwars,mass)

A tibble: 87 x 14
name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex gender homew~5
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
1 Ratts Tyer~ 79 15 none grey, ~ unknown NA male mascu~ Aleen ~
2 Yoda 66 17 white green brown 896 male mascu~ <NA>
3 Wicket Sys~ 88 20 brown brown brown 8 male mascu~ Endor
4 R2-D2 96 32 <NA> white,~ red 33 none mascu~ Naboo
5 R5-D4 97 32 <NA> white,~ red NA none mascu~ Tatooi~
6 Sebulba 112 40 none grey, ~ orange NA male mascu~ Malast~
7 Dud Bolt 94 45 none blue, ~ yellow NA male mascu~ Vulpter
8 Padmé Amid~ 165 45 brown light brown 46 fema~ femin~ Naboo
9 Wat Tambor 193 48 none green,~ unknown NA male mascu~ Skako
10 Sly Moore 178 48 none pale white NA <NA> <NA> Umbara
... with 77 more rows, 4 more variables: species <chr>, films <list>,
vehicles <list>, starships <list>, and abbreviated variable names
1: hair_color, 2: skin_color, 3: eye_color, 4: birth_year, 5: homeworld
i Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

Prof. Wells Data Wrangling STA 209, 2/6/23 18 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together

• Suppose you want to perform a sequence of operations on a data frame df with
several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together
• Suppose you want to perform a sequence of operations on a data frame df with

several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together
• Suppose you want to perform a sequence of operations on a data frame df with

several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together
• Suppose you want to perform a sequence of operations on a data frame df with

several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:

1 Code quickly become overwhelming to read and review (especially as number of
functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together
• Suppose you want to perform a sequence of operations on a data frame df with

several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

The Pipe

• The pipe operator %>% (read as “pipe” or “then”) chains verbs together
• Suppose you want to perform a sequence of operations on a data frame df with

several variables:

1 selecting only the first variable with the function select()
2 filtering observations in a certain range with the function filter()
3 arranging observations in increasing order with the function arrange()

• One way to code this is:
arrange(filter(select(my_data, var_1) %in% range))

• This method has two primary problems:
1 Code quickly become overwhelming to read and review (especially as number of

functions and arguments increases)

2 The operations (as read from left to right) appear in the opposite order to how they are
performed

Prof. Wells Data Wrangling STA 209, 2/6/23 19 / 20

Summarizing with dplyr Data Wrangling

Pipe Composition

• Instead, we can obtain the same output using the pipe:

df %>%
select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to
1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)

Prof. Wells Data Wrangling STA 209, 2/6/23 20 / 20

Summarizing with dplyr Data Wrangling

Pipe Composition

• Instead, we can obtain the same output using the pipe:
df %>%

select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to
1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)

Prof. Wells Data Wrangling STA 209, 2/6/23 20 / 20

Summarizing with dplyr Data Wrangling

Pipe Composition

• Instead, we can obtain the same output using the pipe:
df %>%

select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to

1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)

Prof. Wells Data Wrangling STA 209, 2/6/23 20 / 20

Summarizing with dplyr Data Wrangling

Pipe Composition

• Instead, we can obtain the same output using the pipe:
df %>%

select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to
1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)

Prof. Wells Data Wrangling STA 209, 2/6/23 20 / 20

Summarizing with dplyr Data Wrangling

Pipe Composition

• Instead, we can obtain the same output using the pipe:
df %>%

select() %>%
filter() %>%
arrange()

• Reading %>% as “then”, this sequence translates to
1 Take df then
2 Use this output as input of select() then
3 Use this output as input of filter() then
4 Use this output as input of arrange()

• Advantages:
• The pipe sequence is much more readable.
• Much easier to add more functions to the mix at a later time (since they can be tacked

on at the end of the sequence)

Prof. Wells Data Wrangling STA 209, 2/6/23 20 / 20

	Summarizing with dplyr
	Data Wrangling

