Linear Regression with Categorical Variables

Prof. Wells

STA 209, 2/22/23

Outline

In this lecture, we will...

Outline

In this lecture, we will...

- Create linear models with binary categorical explanatory variables
- Extend linear models to include arbitrary categorical explanatory variables

Section 1

Regression for Binary Categorical Variables

 Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

 Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \dots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

 Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \dots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

• General linear regression requires a quantitative response variable, but allows us to:

 Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \dots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

- General linear regression requires a quantitative response variable, but allows us to:
 - Use either quantitative or categorical explanatory variables
 - Simultaneously include multiple explanatory variables
 - Model non-linear relationships between explanatory and response variables.

 Simple linear regression model a linear relationship between two quantitative variables.

$$\hat{Y} = \beta_0 + \beta_1 X$$

• General Linear Regression is a more flexible class of models that take the form:

$$\hat{Y} = \beta_0 + \beta_1 f_1(X_1) + \beta_2 f_2(X_2) + \dots + \beta_p f_p(X_p)$$

where p is the number of variables present, f_1, \ldots, f_p are functions of those variables, and $\beta_0, \beta_1, \ldots, \beta_p$ are fixed constants.

- General linear regression requires a quantitative response variable, but allows us to:
 - Use either quantitative or categorical explanatory variables
 - Simultaneously include multiple explanatory variables
 - Model non-linear relationships between explanatory and response variables.
- Today, we'll focus on just the first extension above: using categorical explanatory variables.

• Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
 - We record caffeine consumption for 42 students:

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 9am
                 300
##
    2 10am
##
                   0
##
    3 9am
                 120
                 300
##
    4 9am
##
    5 9am
                    0
    6 10am
##
    7 10am
##
                 450
##
    8 10am
##
    9 9am
                 250
   10 10am
                 160
   # ... with 32 more rows
```

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:
- And compute relevant statistics:

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 9am
                 300
##
    2 10am
##
                   0
##
    3 9am
                 120
                 300
##
    4 9am
##
    5 9am
                    0
    6 10am
##
##
    7 10am
                 450
##
    8 10am
    9 9am
##
                 250
   10 10am
                 160
   # ... with 32 more rows
```

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 9am
                 300
##
    2 10am
##
                   0
##
    3 9am
                 120
                 300
##
    4 9am
##
    5 9am
                    0
    6 10am
##
##
    7 10am
                 450
##
    8 10am
##
    9 9am
                 250
   10 10am
                 160
   # ... with 32 more rows
```

And compute relevant statistics:

```
caffeine %>% group by(section) %>%
  summarize(
    mean score = mean(mg),
    sd score = sd(mg),
    n = n()
## # A tibble: 2 x 4
##
     section mean_score sd_score
                                      n
##
     <fct>
                  <dbl>
                           <dbl> <int>
                             177.
  1 9am
                   193.
                                     21
                   157.
## 2 10am
                            174.
                                     21
```

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 9am
                 300
##
    2 10am
##
                   0
    3 9am
##
                 120
                 300
##
    4 9am
##
    5 9am
                   0
    6 10am
##
##
    7 10am
                 450
##
    8 10am
##
    9 9am
                 250
  10 10am
                 160
   # ... with 32 more rows
```

And compute relevant statistics:

```
caffeine %>% group_by(section) %>%
  summarize(
    mean_score = mean(mg),
    sd_score = sd(mg),
    n = n() )
## # A tibble: 2 x 4
```

 Note that mean consumption is higher in the 9am section (but not much higher relative to standard deviation)

- Suppose we are interested in whether a 9am or 10am section of an Intro Stats class consumes more caffeine on a typical day:
 - We can treat caffeine consumption in mg as the (quantitative) response variable, and section as the (categorical) explanatory variable.
- We record caffeine consumption for 42 students:

```
## # A tibble: 42 x 2
##
      section
                  mg
##
      <fct>
               <dbl>
    1 9am
                 300
##
    2 10am
##
                   0
    3 9am
##
                 120
                 300
##
    4 9am
##
    5 9am
                   0
    6 10am
##
##
    7 10am
                 450
##
    8 10am
##
    9 9am
                 250
  10 10am
                 160
   # ... with 32 more rows
```

And compute relevant statistics:

```
caffeine %>% group_by(section) %>%
  summarize(
    mean_score = mean(mg),
    sd_score = sd(mg),
    n = n() )
## # A tibble: 2 x 4
```

 Note that mean consumption is higher in the 9am section (but not much higher relative to standard deviation)

Visualizations

• Since the response is quantitative, and the explanatory is categorical, we can visualize either with side-by-side boxplots or with a jittered scatterplot:

Visualizations

 Since the response is quantitative, and the explanatory is categorical, we can visualize either with side-by-side boxplots or with a jittered scatterplot:

Advantages of each type of plot?

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section}$$

A linear model for mg as a function of section is problematic:

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}$$

section is categorical, so we can't add or multiply its values to get a number

$$\hat{\text{mg}} = \beta_0 + \beta_1 \cdot \text{section}$$

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section}$$

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can create a new variable which recodes the levels of section as a binary indicator variable

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section}$$

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can create a new variable which recodes the levels of section as a binary indicator variable

00000000000

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}$$

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can create a new variable which recodes the levels of section as a binary indicator variable

```
## # A tibble: 42 x 3
      section 10am section
##
                                mg
              <dbl> <fct>
                             <dh1>
##
                  0 9am
                               300
                  0 9am
                               175
                  0 9am
                               150
                  0 9am
                               300
                  0 9am
                  1 10am
                                25
                  0 9am
                               200
                  1 10am
                               275
                               200
                  0 9am
                  1 10am
                               100
      .. with 32 more rows
```

- The variable section 10am takes the value...
 - 1, if a student is in the 10am section
 - 0. if a student is in the 9am section

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section}$$

- section is categorical, so we can't add or multiply its values to get a number
- But there is a relatively easy fix!
- We can create a new variable which recodes the levels of section as a binary indicator variable

```
## # A tibble: 42 x 3
      section 10am section
##
                                mg
              <dbl> <fct>
                             <dh1>
##
                  0 9am
                               300
                  0 9am
                               175
                  0 9am
                               150
                  0 9am
                               300
                  0 9am
                  1 10am
                                25
                  0 9am
                               200
                  1 10am
                               275
                               200
                  0 9am
                  1 10am
                               100
      .. with 32 more rows
```

- The variable section_10am takes the value...
 - 1, if a student is in the 10am section
 - 0, if a student is in the 9am section
- This choice was somewhat arbitrary.
 - We could have instead created a variable called section_9am that takes the value 1 if a student is in the 9am section.

• After recoding, a linear equation is now possible:

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_10am$$

• After recoding, a linear equation is now possible:

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_10am$$

• After recoding, a linear equation is now possible:

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_10am$$

• For example, suppose

$$\hat{\text{mg}} = 193 - 36 \cdot \text{section} \underline{10} \text{am}$$

After recoding, a linear equation is now possible:

$$\hat{\mathrm{mg}} = \beta_0 + \beta_1 \cdot \mathrm{section_10am}$$

For example, suppose

$$\hat{\mathrm{mg}} = 193 - 36 \cdot \mathrm{section}_10\mathrm{am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{\text{mig}} = 193 - 36 \cdot 1 = 157$$

After recoding, a linear equation is now possible:

$$\hat{\text{mg}} = \beta_0 + \beta_1 \cdot \text{section} \underline{10} \text{am}$$

• For example, suppose

$$\hat{\mathrm{mg}} = 193 - 36 \cdot \mathrm{section}_10\mathrm{am}$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{\rm mg} = 193 - 36 \cdot 1 = 157$$

If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

After recoding, a linear equation is now possible:

$$\hat{\text{mg}} = \beta_0 + \beta_1 \cdot \text{section} \underline{10} \text{am}$$

For example, suppose

$$\hat{mg} = 193 - 36 \cdot section_10am$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{\rm mg} = 193 - 36 \cdot 1 = 157$$

• If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

• The value of β_0 is the prediction for students *not* in the 10am section. This is the **baseline** prediction. (The baseline is 193mg)

After recoding, a linear equation is now possible:

$$\hat{\text{mg}} = \beta_0 + \beta_1 \cdot \text{section} \underline{10}$$
am

For example, suppose

$$\hat{mg} = 193 - 36 \cdot section_10am$$

• If a student is in the 10am section, then section_10am = 1, then the model predicts

$$\hat{\rm mg} = 193 - 36 \cdot 1 = 157$$

• If a student is in the 9am section, then section_10am = 0, then the model predicts

$$\hat{mg} = 193 - 36 \cdot 0 = 193$$

- The value of β_0 is the prediction for students *not* in the 10am section. This is the **baseline** prediction. (The baseline is 193mg)
- The value of β_1 is the **change** in prediction for a student in the 10am section, relative to the baseline. (The change is -36mg)

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• Since this is a scatterplot of two *quantitative* variables, we can find the line of best fit!

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• Since this is a scatterplot of two *quantitative* variables, we can find the line of best fit!

Least Squares Regression

Consider the jittered scatterplot for mg and section_10am

• The line of best fit passes through the mean mg in each section!

• In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X=0.

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X=0.
 - If X is binary, the best prediction for Y when X=0 is the mean value of Y when X=0

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X=0.
 - If X is binary, the best prediction for Y when X = 0 is the mean value of Y when X = 0
- If Y is a quantitative response variable and X is a binary numeric variable, then the least squares regression line is

$$\hat{\mathbf{Y}} = \beta_0 + \beta_1 \mathbf{X}$$

- In general, the slope β_1 of a regression line is the average change in Y per unit increase in X.
 - If X is binary, it can only take two values: 0 and 1.
 - Increasing X by 1 exactly corresponds to changing from the first level of X to the second level of X.
- The intercept β_0 of a regression line is the predicted value when X=0.
 - If X is binary, the best prediction for Y when X=0 is the mean value of Y when X=0
- If Y is a quantitative response variable and X is a binary numeric variable, then the least squares regression line is

$$\hat{Y} = \beta_0 + \beta_1 X$$

- β_0 is the mean of Y when X=0
- β_1 is the difference in means of Y between when X=1 and X=0.
- $\beta_0 + \beta_1$ is the mean of Y when X = 1.

Finding Least Squaress Line (by hand)

• Since β_0 , β_1 only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

Finding Least Squaress Line (by hand)

• Since β_0 , β_1 only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

```
caffeine %>% group_by(section) %>% summarize(mean = mean(mg))
```

```
## # A tibble: 2 x 2
## section mean
## <fct> <dbl>
## 1 9am 193.
## 2 10am 157.
```

Finding Least Squaress Line (by hand)

• Since β_0 , β_1 only require us to know the mean of Y when X is 0 and 1, we can compute the least squares line by hand:

```
caffeine %>% group_by(section) %>% summarize(mean = mean(mg))
```

```
## # A tibble: 2 x 2
## section mean
## <fct> <dbl>
## 1 9am 193.
## 2 10am 157.
```

$$\hat{mg} = 193 - 36 \cdot \text{section}$$
 10am Since $193 - 157 = 36$

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

caf_mod <- lm(mg ~ section, data = caffeine)
get regression table(caf mod)</pre>

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

```
caf_mod <- lm(mg ~ section, data = caffeine)
get regression table(caf mod)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

```
caf_mod <- lm(mg ~ section, data = caffeine)
get regression table(caf mod)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

```
caf_mod <- lm(mg ~ section, data = caffeine)
get regression table(caf mod)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.
 - If no order is provided, it will use alphabetical order.

00000000000

- But we can also use 1m in R.
 - R will even automatically convert binary categorical variables to numeric indicators:

```
caf mod <- lm(mg ~ section, data = caffeine)
get regression table(caf mod)
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	193.333	38.224	5.058	0.000	116.080	270.587
section10am	-36.429	54.057	-0.674	0.504	-145.681	72.824

- But R made a choice here about which level to code as a 0 and which to code as a 1
 - It coded the 9am section as 0 and the 10am section as 1 (how do I know?)
 - In general, R will code the first level of a factor as 0, and the second as a 1.
 - If no order is provided, it will use alphabetical order.
 - If you want to change the order, you need to mutate the data frame using fct_relevel

Section 2

Linear Regression with Multi-level Categorical Variables

More Classes

 Suppose we also have data on caffeine consumption from a 3rd section of Intro Stats, at 8am

```
# A tibble: 63 x 2
  section
            mg
  <fct>
          <db1>
                                 caffeine3 %>% group_by(section) %>%
 1 10am
                                   summarize(mean_mg = mean(mg), sd_mg = sd(mg))
 2 9am
            550
 3 10am
                                 ## # A tibble: 3 x 3
 4 10am
                                      section mean_mg sd_mg
 5 8am
                                 ##
                                      <fct>
                                                <dbl> <dbl>
 6 9am
            40
                                                 195. 164.
                                 ## 1 8am
 7 9am
           400
                                               193. 177.
                                 ## 2 9am
 8 8am
           100
                                 ## 3 10am 157, 174.
 9 10am
            200
10 9am
            100
```

 Goal: Create a linear model that takes section as input and returns a predicted mg as output.

... with 53 more rows

We could try to recode levels by converting to the integers 0, 1 and 2.

- We could try to recode levels by converting to the integers 0, 1 and 2.
 - \bullet But this would be very problematic for creating the line of best fit. Why?

- We could try to recode levels by converting to the integers 0, 1 and 2.
 - But this would be very problematic for creating the line of best fit. Why?

- ullet We could try to recode levels by converting to the integers 0, 1 and 2.
 - But this would be very problematic for creating the line of best fit. Why?

 Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_8am is 1 if the student is in the 8am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_8am is 1 if the student is in the 8am section, and 0 otherwise.
 - section_9am is 1 if the student is in the 9am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_8am is 1 if the student is in the 8am section, and 0 otherwise.
 - section_9am is 1 if the student is in the 9am section, and 0 otherwise.
 - section_10am is 1 if the student is in the 10am section, and 0 otherwise.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_8am is 1 if the student is in the 8am section, and 0 otherwise.
 - section_9am is 1 if the student is in the 9am section, and 0 otherwise.
 - section_10am is 1 if the student is in the 10am section, and 0 otherwise.
 - Note that for a given student, exactly one of these variables is 1, and the other two are 0.

- Instead of defining a single numeric variable to encode all levels, we need a binary indicator variable for each level:
 - section_8am is 1 if the student is in the 8am section, and 0 otherwise.
 - section_9am is 1 if the student is in the 9am section, and 0 otherwise.
 - section_10am is 1 if the student is in the 10am section, and 0 otherwise.
 - Note that for a given student, exactly one of these variables is 1, and the other two are 0.

```
## # A tibble: 63 x 5
##
     section section 8am section 9am section 10am
                                                        mg
     <fct>
                    <dbl>
                                 <dbl>
                                              <dbl> <dbl>
##
## 1 8am
                                                   0
                                                       140
                                                       600
## 2 10am
  3 10am
## 4 8am
                                                       150
## 5 9am
                                                        50
## # ... with 58 more rows
```

We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_9am + \beta_2 \cdot section_10am$$

• We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section} - 9\text{am} + \beta_2 \cdot \text{section} - 10\text{am}$$

$$\hat{\mathrm{mg}} = 195 - 1.5 \cdot \mathrm{section}_9 \mathrm{am} - 38 \cdot \mathrm{section}_10 \mathrm{am}$$

• We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_9am + \beta_2 \cdot section_10am$$

$$\hat{mg} = 195 - 1.5 \cdot \text{section} - 9\text{am} - 38 \cdot \text{section} - 10\text{am}$$

- What is the predicted caffeine consumption for a student in . . .
 - The 8am section?
 - The 9am section?
 - The 10am section?

• We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_9am + \beta_2 \cdot section_10am$$

$$\hat{mg} = 195 - 1.5 \cdot \text{section} - 9\text{am} - 38 \cdot \text{section} - 10\text{am}$$

- What is the predicted caffeine consumption for a student in . . .
 - The 8am section?
 - The 9am section?
 - The 10am section?
- Where did the indicator for the 8am section go in the formula for the model???

• We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_9am + \beta_2 \cdot section_10am$$

$$\hat{mg} = 195 - 1.5 \cdot \text{section} - 9\text{am} - 38 \cdot \text{section} - 10\text{am}$$

- What is the predicted caffeine consumption for a student in . . .
 - The 8am section?
 - The 9am section?
 - The 10am section?
- Where did the indicator for the 8am section go in the formula for the model???
 - The 8am section is treated as the baseline, and so does not need its own indicator.

• We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot section_9am + \beta_2 \cdot section_10am$$

$$\hat{mg} = 195 - 1.5 \cdot \text{section} - 9\text{am} - 38 \cdot \text{section} - 10\text{am}$$

- What is the predicted caffeine consumption for a student in . . .
 - The 8am section?
 - The 9am section?
 - The 10am section?
- Where did the indicator for the 8am section go in the formula for the model???
 - The 8am section is treated as the baseline, and so does not need its own indicator.
 - The intercept is the prediction for the baseline.

We can define a multivariate linear model for mg as a function of section by

$$\hat{mg} = \beta_0 + \beta_1 \cdot \text{section_9am} + \beta_2 \cdot \text{section_10am}$$

$$\hat{mg} = 195 - 1.5 \cdot \text{section} - 9\text{am} - 38 \cdot \text{section} - 10\text{am}$$

- What is the predicted caffeine consumption for a student in . . .
 - The 8am section?
 - The 9am section?
 - The 10am section?
- Where did the indicator for the 8am section go in the formula for the model???
 - The 8am section is treated as the baseline, and so does not need its own indicator.
 - The intercept is the prediction for the baseline.
 - Slopes on the other indicator variables correspond to differences from the baseline.

 \bullet As with quantitative \sim quantitative, and quantitative \sim binary, we can use the 1m function to create linear models for quantitative \sim multilevel in R

• As with quantitative \sim quantitative, and quantitative \sim binary, we can use the 1m function to create linear models for quantitative \sim multilevel in R

```
caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)</pre>
```

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m function to create linear models for quantitative ~ multilevel in R

```
caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
section9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
section10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m function to create linear models for quantitative ~ multilevel in R

```
caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
section9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
section10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

• Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline
8am	194.7619	0.000000
9am	193.3333	-1.428571
10am	156.9048	-37.857143

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m function to create linear models for quantitative ~ multilevel in R

```
caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
section9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
section10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline
8am	194.7619	0.000000
9am	193.3333	-1.428571
10am	156.9048	-37.857143

• The intercept is the mean value of the response for the baseline level.

As with quantitative ~ quantitative, and quantitative ~ binary, we can use the 1m function to create linear models for quantitative ~ multilevel in R

```
caf_mod3 <- lm(mg ~ section, data = caffeine3)
get_regression_table(caf_mod3)</pre>
```

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	194.762	37.431	5.203	0.000	119.890	269.634
section9am	-1.429	52.935	-0.027	0.979	-107.314	104.457
section10am	-37.857	52.935	-0.715	0.477	-143.742	68.028

Let's compare to some statistics we've already computed:

section	mean_mg	diff_from_baseline
8am	194.7619	0.000000
9am	193.3333	-1.428571
10am	156.9048	-37.857143

- The intercept is the mean value of the response for the baseline level.
- The slopes are the difference in mean values between the indicated level and the baseline.

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

 ${\tt get_regression_points(caf_mod3)}$

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

```
A tibble: 63 \times 5
##
          ID
                mg section mg hat residual
##
      <int> <dbl> <fct>
                             <dbl>
                                       <dbl>
         57
               225 8am
                              195.
                                        30.2
##
    1
                              193.
##
               150 9am
                                      -43.3
                 0 10am
                              157.
                                      -157.
##
         39
    4
          1
               550 9am
                              193.
                                       357.
##
         34
                 0 10am
                              157.
                                      -157.
         23
                 0 10am
                              157.
                                      -157.
##
##
    7
         43
                 0 8am
                              195.
                                      -195.
##
    8
         14
                40 9am
                              193.
                                      -153.
##
         18
               400 9am
                              193.
                                       207.
## 10
         51
               100 8am
                              195.
                                       -94.8
         with 53 more rows
```

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

get_regression_points(caf_mod3)

```
A tibble: 63 \times 5
##
          ID
                mg section mg_hat residual
##
      <int> <dbl> <fct>
                             <dbl>
                                       <dbl>
         57
               225 8am
                              195.
                                        30.2
##
    1
##
               150 9am
                              193.
                                      -43.3
                 0 10am
                              157.
                                      -157.
##
         39
          1
               550 9am
                              193.
                                       357.
##
         34
                 0 10am
                              157.
                                      -157.
         23
                 0 10am
                              157.
                                      -157.
##
##
    7
         43
                 0 8am
                              195.
                                      -195.
##
         14
                40 9am
                              193.
                                      -153.
         18
               400 9am
                              193.
                                       207.
##
## 10
         51
               100 8am
                              195.
                                       -94.8
         with 53 more rows
```

• Recall, residuals are the difference between the observed and predicted values

 As with simple linear regression for quantitative ~ quantitative, we can get residuals for each observation:

```
{\tt get\_regression\_points(caf\_mod3)}
```

```
A tibble: 63 \times 5
##
         ID
                mg section mg hat residual
##
      <int> <dbl> <fct>
                             <db1>
                                       <dbl>
         57
               225 8am
                              195.
                                        30.2
##
    1
               150 9am
                              193.
                                     -43.3
##
                 0 10am
                             157.
                                      -157.
##
         39
               550 9am
                              193.
                                      357.
##
          1
         34
                 0 10am
                              157.
                                      -157.
##
         23
                 0 10am
                              157.
                                      -157.
##
##
   7
         43
               0 8am
                              195.
                                     -195.
##
         14
                40 9am
                              193.
                                     -153.
         18
               400 9am
                              193.
                                      207.
##
## 10
         51
               100 8am
                              195.
                                      -94.8
     ... with 53 more rows
```

- Recall, residuals are the difference between the observed and predicted values
- Here, residual tells us the difference between a student's actual mg consumed and the mean mg for that student's class.